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The use of agricultural by-product as feed stock and co-culture fermentation is a good strategy for 
improving the efficiency of fermentation and ethanol production. Most rice husks have low protein and 
nitrogen content and need to be supplemented with nitrogen for fermentation process. This research 

sought to determine the optimal supplementation of rice husk stream–based fermentation medium with 
nitrogen and molasses sources, initial pH and incubation time for maximizing ethanol production by co-
culturing Saccharomyces  cerevisiae with Candida tropicalis. Urea, sodium nitrate and ammonium 

nitrate were used as nitrogen sources and molasses was used as carbon sources. Co-cultures of S. 
cerevisiae and C. tropicalis can use different nitrogen sources and molasses for growth and ethanol 
production. Molasses supplemented with rice husk hydrolysate medium, initial pH and incubation 

period significantly influenced ethanol yield and content of nitrogen and carbon in distillers grains 
(DDG). Maximum ethanol yield (20.32 ± 0.42%) with nitrogen (4.40 ± 0.11%) and carbon (9.20 ± 1.01%) 
content of DDG were obtained in the rice husk hydrolysate medium containing 16.0 g/l urea, 12.0 g/l 

NaNO3, 12.0 g/l NH4NO3, 1.0 g/l KH2PO4, 0.7 g/l MgSO4·7H2O, 20 ml/l molasses, 1.0 g/l KH2PO4 and 0.7 g/l 
MgSO4·7H2O with initial pH 5.5 and 6 days incubation period at 28 to 29

°
C, 50% relative humidity in the 

dark for 5 d in a rotary incubator at 60 rpm. 

 
Key words: Rice husk, Saccharomyces cerevisiae, Candida tropicalis, co-culture, ethanol yield, nitrogen and 
molasses.  

 
 

INTRODUCTION 

 
The use of agricultural by-product as feed stock and co-
culture fermentation is a good strategy for improving the 

efficiency   of   fermentation    and     ethanol   production. 

Lignocellulosic biomass including agricultural by-product 
has been considered as possible raw material for ethanol 

production   due   to    its   renewability,   large  quantities,
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relatively low prices compared to grain or sugar, potential 

environmental benefits and competactiveness with food  
(Cardona and Sa´nchez, 2007;  Kumar et al., 2008; Lee 
and Huang, 2000; Mielenz, 2001; Service, 2007; Zaldivar 

et al., 2001; Ishola and Taherzadeeh, 2014).   
The lack of a microorganism able to ferment efficiently 

all sugars released by hydrolysis from lignocellulosic 

materials has been one of the main factors preventing 
utilization of lignocellulose (Zaldivar et al., 2001). In a 
previous study, the simple sugar content in rice husk 

hydrolysate consists of 35.97% glucose, 8.87% xylose 
and 1.21% arabinose (Sopandi and Wardah, 2015). 
Saccharomyces cerevisiae, which is by far the dominant 

yeast used for ethanol production, naturally converts 
glucose to ethanol but does not metabolize xylose 
(Jeffries and Jin, 2004; Lin and Tanakan, 2006). In 

addition, other problem associated with efficient 
conversion of cellulose and hemicellulose sugars to 
ethanol is that during dilution of acid hydrolysis, a broad 

range of compounds which inhibit the fermenting 
microorganism are liberated or formed along with the 
sugars (Larsson et al., 2001). The ethanol yield and 

productivity obtained during fermentation of lignocellulosic 
hydrolysates  decreases due to the presence of inhibiting 
compounds, such as weak acids, furans and phenolic 

compounds formed or released during thermo-chemical 
pre-treatment step such as acid and steam explosion 
(Parawira and Tekere, 2011).   

Although it varies, most rice husks have low protein 
and nitrogen content and need to be supplemented with 
nitrogen for fermentation process. In one study, crude 

protein and nitrogen of rice husks were 4.38 and 0.7%, 
respectively, with C/N ratio of 57.93 (Ofoefule et al., 
2011). In another study, crude protein, crude fiber and 

gross energy of rice husks were 1.92%, 37.33% and 
302.33 kcal/kg, respectively (Telew et al., 2013). Nitrogen 
sources such as ammonium (Jones et al., 1994; 

Srichuwong et al., 2009) and urea (Jones and Ingledew, 
1994; Yue et al., 2010) are widely used to increase yeast 
growth, and rate of sugar utilization and to reduce 

fermentation time (Chniti et al., 2015). Urea not only 
promoted the specific growth rate and ethanol tolerance, 
but also increased the ethanol yield and reduced the 

formation of side products (Yue et al., 2010). However, 
several investigators have reported the negative effects 
of using ammonium and urea as nitrogen supplements in 

ethanol fermentation (Laopaiboon et al., 2009; Wang et 
al., 2003; Beltran et al., 2005; Chniti et al., 2015). 

Carbon   and   nitrogen   are   both   required   in   yeast 

metabolism. The type and concentration of carbon and 

nitrogen sources as well as the C/N ratio of the medium, 
S. cerevisiae cultivation influence cellular growth and 
metabolites biosynthesis (Thomas et al., 1996). Molasses 

is a waste product of the sugar industry which can be 
used as a substrate for ethanol production by S. 
cerevisiae (Fern´andez-L´opez et al., 2012; Sadik and 

Halema, 2014). Molasses contains readily utilizable 
carbohydrates available in the form of fermentable sugars 
and can be used by the alcohol producing yeasts without 

any pretreatment (Murtagh, 1999). 
Co-culture is a potential bioprocess whereby, there are 

no cross-interactions among microorganisms and each 

microorganism metabolizing its substrate is unaffected by 
the presence of other microorganism (Park et al., 2012). 
Co-culture of S. cerevisiae and other microorganism 

increases ethanol productivity which might be due to 
enhanced substrate utilization (Tesfaw and Assefa, 
2014). Co-culture of S. cerevisiae with other microbes 

reduces inhibitory compounds in lignocellulosic 
hydrolysates (Tom´as et al., 2013; Taherzadeh and 
Karimi, 2011; Wan et al., 2012) which increases ethanol 

yield and production rate (Singh et al., 2014; Wan, 2012), 
shortens fermentation time, and reduces process cost 
(Hickert et al., 2013; Tesfaw and Assefa, 2014). 

C. tropicalis have been demonstrated to produce 
ethanol from a mixed-sugar stream (Oberoi et al., 2010) 
and acid hydrolysate olive pruning (Mateo et al., 2015). It 

is able to degrade acetate, furfural, and 5-
hydromethylfurfural and metabolite xylose to ethanol 
under anaerobic simultaneous saccharification and 

fermentation (Cheng et al., 2014). In a previous study, 
ethanol production from rice husks hydrolysate medium 
by co-culturing of  S. cerevisiae and C. tropicalis higher 

than mono cultures of S. cerevisiae or C. tropicalis and 
other mono and co-cultures fermentation was more 
efficient in metabolizing and converting fermentable 

sugars than other selected microorganisms (Sopandi and 
Wardah, 2015). The present study explored the 
supplementation of inorganic nitrogen sources and 

molasses used to improve ethanol production by co-
culturing of S. cerevisiae with C. tropicalis from rice husk 
hydrolisate.  
 

 

MATERIALS AND METHODS 

 

Culture microorganism 

 

S.  cerevisiae  Food  and  Nutrition  Culture Collection (FNCC) 3012 
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and C. tropicalis FNCC 3033 w ere obtained from Microbiology 

Laboratories, PPAU Gadjah Mada University, Yogyakarta, 

Indonesia. Sabouraud agar (Oxoid) w as used to maintain the 

strains. Working stock cultures w ere prepared from stock in 7 days 

at 28°C SA plate cultures subcultures from the master stock. 

Colonies w ere aseptically sampled by scraping the top w ith an 

inoculating loop and transferred to 10 ml sterile w ater. Inoculum 

stock suspensions w ere prepared from w orking stock and diluted to 

1.7 x 106 cell/ml, as enumerated using a haemocytometer. 
 

 

Rice husk hydrolysis 
 

Locally farm-sourced rice husk from Sidoarjo, Indonesia w as air-

dried and then ground to approximately 2-mm diameter particles 

using a grinder mill. The milled rice husks (900 g) w ere steamed at 

130°C for 3 h, cooled to room temperature, mixed w ith 15 l, 2.5% 

H2SO4 and autoclaved for 15 min at 121°C. Hydrolysate w as cooled 

and stored at 1 to 5°C in the dark until it w as used. 
 

 

Inorganic nitrogen supplementation 
 

The effect of inorganic nitrogen supplemented w ith rice husk 

hydrolysate medium on ethanol yield, N and C content of DDG w as 

conducted using completely randomized design w ith 4 treatments 

of N sources w here each treatment w as replicated 5 times. The 

basal medium containing 1500 ml rice husk hydrolysate, 1.0 g/l 

KH2PO4, and 0.7 g/l MgSO4.7H2O w as dispensed into three 

Erlenmeyer f lasks. Each 1000 ml urea, sodium nitrate (NaNO3) and 

ammonium nitrate (NH4NO3) w as added to f inal individual 

concentrations of 9.0 g/l, respectively. Media w ere mixed 

thoroughly, adjusted to pH 5.5 w ith an addition of NaOH, w hich is 

autoclaved for 15 min at 121°C and cooled to room temperature.  

One hundred millilitres w as aseptically dispensed into individual 

Erlenmeyer f lasks (250 ml), inoculated w ith 1.0 ml of S. cerevisiae 

FNCC 3012 and 1.0 ml of C. tropicalis FNCC 3033 inoculum stock 

suspension. All f lasks w ere incubated at 28 to 29°C w ith 50% 

relative humidity in the dark, for 5 d in a rotary incubator at 60 rpm.  
 

 

Molasses supplementation 

 

The effect of molasses supplemented w ith rice husk hydrolysate 

medium on ethanol yield, N and C content of DDG w as conducted 

using completely randomized design w ith 5 treatments of molasses 

proportion in a medium and each treatment w as replicated 5 times. 

Molasses w as obtained from locally sugar industry, Mojekerto, 

Indonesia. Rice husk hydrolysate basal medium (2500 ml) 

containing 3.0 g/l urea, 3.0 g/l NaNO3, 3.0 g/l NH4NO, 1.0 g/l 

KH2PO4 and 0.7 g/l MgSO4·7H2O  w as dispensed into f ive 1000 ml 

Erlenmeyer f lasks. Molasses w as added to f inal concentrations of 

0.0, 5.0, 10.0, 15.0 and 20.0 ml/l.  

Media w ere mixed thoroughly, adjusted to pH 5.5 w ith an addition 

of NaOH or HCl 1 N, autoclaved for 15 min at 121°C and cooled to 

room temperature. One hundred millilitres w as then aseptically 

dispensed into individual Erlenmeyer f lasks (250 ml) w ith one ml of 

S. cerevisiae FNCC 3012 and C.tropicalis FNCC 3033 inoculum 

stock suspension and all f lasks w ere incubated as described above. 
 

 

Formulation of rice husk hydrolysate 
 

The effect of formulation rice  husk  hydrolysate  on ethanol yield, N 
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and C content of DDG w as conducted using completely randomized 

design w ith 4 treatments and each treatment w as replicated f ive 

times. Four formulations of rice husk hydolysate media w ere 

examined to improve ethanol production by co-culturing S. 

cerevisiae FNCC 3012 w ith C. tropicalis FNCC 3033. Rice husk 

hydrolysate basal medium (2000 ml) containing 1.0 g/l KH2PO4 and 

0.7 g/l MgSO4·7H2O w as dispensed into four 1000 ml Erlenmeyer 

f lasks. Individually w ere added 4.0 g/l urea, 3.0 g/l NaNO3, 3.0 g/l 

NH4NO3, and 20 ml/l molasses (F1),  8.0 g/l urea, 6.0 g/l NaNO3, 6.0 

g/l NH4NO3, and 20 ml/l molasses (F2), 12.0 g/l urea, 9.0 g/l NaNO3, 

9.0 g/l NH4NO3, and 20 ml/l molasses (F3), and 16.0 g/l urea, 12.0 

g/l NaNO3, 12.0 g/l NH4NO3 and 20 ml/l molasses (F4), respectively.   

Media w ere mixed thoroughly, adjusted to pH 5.5 w ith an addition 

of NaOH or HCl 1 N, autoclaved for 15 min at 121°C and cooled to 

room temperature. One hundred millilitres w as then aseptically 

dispensed into individual Erlenmeyer f lasks (250 ml) w ith one ml of 

S. cerevisiae FNCC 3012 and C.tropicalis FNCC 3033 inoculum 

stock suspension and all f lasks w ere incubated as described above. 

 

 

Initial medium pH 

 

The effect of initial medium pH on ethanol yield, N and C content of 

DDG w as conducted using completely randomized design w ith 8 

treatments of initial pH medium (3.5 to 7.0) and each of  the 

treatment w as replicated 5 times. 

 To examine the effect of initial medium pH, 100 ml rice husk 

hydrolysate basal medium containing 1.0 g/l KH2PO4, 0.7 g/l 

MgSO4·7H2O,  16.0 g/l urea, 12.0 g/l NaNO3, 12.0 g/l NH4NO3 and 

20 ml/l molasses  w as aliquoted into 8. 250-ml Erlenmeyer f lasks 

and the pH of each w as adjusted to 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 

and 7.0  prior to autoclaving for 15 min at 121°C w ith NaOH or HCl 

0.1 N added. After cooling to room temperature, f lasks w ere 

inoculated w ith 1-ml S. cerevisiae FNCC 3012 and 1- ml  

C.tropicalis FNCC 3033  inoculum stock suspension and incubated 

as described above. 

 

 

Incubation period 

 

The effect of incubation period on ethanol yield, N and C content of 

DDG w as conducted using completely randomized design w ith 9 

treatments of incubation period (1 to 9 d) and each of the treatment 

w as replicated 5 times. The effect of incubation period on ethanol 

yield, nitrogen and carbon content distillate residue w as examined 

using a rice husk hydrolysate basal medium containing 1.0 g/l 

KH2PO4, 0.7 g/l MgSO4·7H2O, 16.0 g/l urea, 12.0 g/l NaNO3, 12.0 g/l 

NH4NO3 and 20 ml/l molasses and adjusted to pH 5.5 by adding 

NaOH and autoclaved for 15 min at 121°C.  

Erlenmeyer f lasks (250 ml) containing 100-ml sterile medium 

w ere inoculated w ith 1-ml S. cerevisiae FNCC 3012 and 1- ml  

C.tropicalis FNCC 3033 inoculum stock suspension and incubated 

as described above.  Ethanol yield, nitrogen and carbon content 

distillate residue analyses w ere carried out every day up to 9-days 

incubation. All data presented are means of four simultaneously 

incubated fermentation culture replicates. 

 

 

Determination of ethanol yield 

 

Whole f lask cultures w ere distillated at 78°C for 60 min and ethanol 

in  distillated w ere measured using a gas chromatograph Carbomax  
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Figure 1. Ethanol yield, nitrogen and carbon content in DDG from rice husk hydrolysate 

medium supplemented inorganic nitrogen different that fermented by co-culture S. 

cerevisiae w ith C. tropicalis. Values and error bars represent means ± SD (n=5). 

 
 
 
t70-10-0 column, FID t220 detector, helium as carrier gas w ith f low  

rate of 40.3 mL/min, tin column Porapack Q, detector temperature 

at 160°C and column temperature at 180°C w ith injection volume 

1.0 μL. Fermented media w ere f iltered through Whatmann No.1 

paper prior to analysis. 

 

 

 

                                 Concentration of ethanol from GC analysis (ml) 

Ethanol yield (%) =                                                                          x 100 

                      Volume of medium (ml) 

 

 

 
 
 
Determination of distillers dried grains 

 

To analyze distillers' dried grains, w hole f lask cultures w ere 

distillated at 78°C for 60 min and residue w as poured through 

predried (100°C) and prew eighed Whatman No.1 f ilter paper. 

Retained material w as w ashed w ith distilled w ater and ethanol until 

it became colourless and dried at 100°C to constant w eight (48 h). 

 

 

Determination of organic carbon  

  

Levels of total organic carbon (TOC) w ere determined using the w et 

oxidation method of Walkey and Black (1965). One hundred 

millilitres (100 ml) of liquid culture w as evaporated at 100°C for 

approximately 2 h to obtain a dried pow der, 0.5 g of w hich w as 

used for TOC determination. 

 

 

Nitrogen determination 

 

Nitrogen (NH4-N) concentration w as determined using the method 

of the American Society of Agronomy and Soil Science Society of 

America (1982).  Ten-millilitre  culture  medium  w as  evaporated  at 

100°C for approximately 2 h to obtain a dried pow der. Samples (50 

mg) w ere added to digestion tubes. 1-g selenium mixture (mashed 

1.55 g CuSO4, 96.9 g Na2SO4 and 1.55 g selenium) and 3-ml 97% 

H2SO4 w ere added, mixed and digested at 350°C for 4 h to obtain a 

colourless extract, cooled to room temperature, diluted to 50 ml w ith 

distilled w ater, shaken vigorously and left to stand overnight. Tw o-

millilitre of extract w as placed and transferred to a new  borosilicate 

glass test tube. 4 ml potassium sodium tartrate buffer (50 g NaOH 

and 50 g KNaC4H4O6 in 1000 ml distillated w ater) and sodium 

phenate solution (100 g NaOH and 125 g phenol in 1000 ml 

distillated w ater) w ere successively added, mixed and allow ed to 

stand for 10 min. Four-millilitre of 5% NaOCl w as also added, 

shaken and allow ed to stand for 10 min w ith an absorbance 

measurement at 636 nm. (NH4)2SO4 w hich w as used to prepare N 

standards. 

 
 
Statistical analysis 

 

Tukey’s honestly signif icant difference multiple comparison tests 

w ere used to segregate signif icantly different treatments using 

SPSS 16 softw are. Analysis of variance (ANOVA) w as performed to 

determine signif icant differences betw een experiments (P < 0.05). 

 
 
RESULTS  
 

Effect of inorganic nitrogen supplementation  
 
No significant (P>0.05) differences in ethanol yield or 

nitrogen and carbon content of distillers' dried grains 
(DDG) was observed between types of nitrogen source 
(Figure 1). Also, no significant (P > 0.05) differences were  
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Figure 2.  Effect of molasses  addition on ethanol yield, nitrogen and carbon content of 

DDG rice husk hydrolysate medium that fermented by co-culture by co-culture S. 

cerevisiae w ith C. tropicalis.  Values and error bars represent means ± SD (n=5) in 

same variable (ethanol yield, nitrogen and carbon) w ith different subscript show n 

ANOVA Tukey’s test. a, b, c, d P<0.05 w ithin respective groups. 

 
 

 
observed between ethanol yields from rice husk 
hydrolysate basal media supplemented with urea. A 

similar lack of effect was observed for nitrogen content in 
DDG. Addition of inorganic nitrogen to the rice husk 
hydrolysate basal medium significantly affected (P > 

0.05) carbon content of DDG. 
 
 

Effect of molasses supplementation 
 
Addition of 5 to 20 ml/l molasses to the rice husk 

hydrolysate basal medium significantly (P<0.05) increased 
ethanol yield, nitrogen and carbon content of DDG 
(Figure 2). Increasing amounts of molasses (5, 10, 15 

and 20 ml/l) in the medium progressively increased 
ethanol yield. Ethanol yield in the basal medium alone is 
significantly (P<0.05) lower than that in the basal medium 

plus 5, 10, 15, and 20 ml/l molasses, but no significant 
(P>0.05) difference between 15 and 20 ml/l molasses. 
Nitrogen content of DDG from the rice husk hydrolysate 

basal medium was also significantly (P < 0.05) lower than 
that in the rice husk hydrolysate basal medium plus 
molasses (10, 15, and 20 ml/l).  

Nitrogen content of DDG in the basal medium was not 
significantly different (P>0.05) from the basal medium 
plus of 5 ml/l molasses, but significantly (P<0.05) lower 

than that in basal medium plus 10, 15 and 20 ml/l 
molasses. However, there is no significant (P>0.05) 
difference between  15 ml/l  and  20 ml/l  molasses  basal 

medium plus. This indicates molasses-concentration 
stimulates growth of yeast and ethanol production. While 

the mean carbon content of DDG in the basal medium 
was not significantly different (P>0.05) from that in the 
basal medium plus 5 ml/l molasses, it was significantly 

(P<0.05) lower than that in  the basal medium plus 10, 15 
and 20 ml/l molasses. However, no significant (P>0.05) 
difference was seen between 15 ml/l and 20 ml/l 

molasses. 
 
 

Formulation of rice husk hydrolysate media  
 
Formulation of rice husk hydrolysate media 

supplemented with inorganic nitrogen and molasses 
significantly (P<0.05) influenced ethanol yield, nitrogen 
and carbon content of DDG (Figure 3).  The addition of 

nitrogen source and molasses to the rice husks 
hydrolysate fermentation media increased ethanol yield 
and nitrogen levels but lowered the carbon content of 

DDG.  
Values and error bars represent means ± SD (n=5) in 

same variable (ethanol yield, nitrogen and carbon) with 

different subscripts shown in ANOVA Tukey’s test. a, ab, 
b, bc, c P<0.05 within respective groups. F1; 1000 ml rice 
husk hydrolysate, 4.0 g/l urea, 3.0 g/l NaNO3, 3.0 g/l 

NH4NO3, 1.0 g/l KH2PO4, 0.7 g/l MgSO4·7H2O, 20 ml/l 
molasses,  F2; 7H2O, 20 ml/l molasses, F3; 1000 ml rice 
husk   hydrolysate   12.0 g/l  urea,  9.0 g/l  NaNO3,  9.0 g/l
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Figure 3. Effect of different formulation of rice husk  hydrolysate culture medium on ethanol yield, 

nitrogen and carbon content of DDG w ere fermented by co-culture S. cerevisiae w ith C. tropicalis. 

 
 

 
NH4NO3, 1.0 g/l KH2PO4, 0.7 g/l MgSO4·7H2O, 20 ml/l 
molasses and F4; 1000 ml rice husk hydrolysate, 16.0 g/l 

urea, 12.0 g/l NaNO3, 12.0 g/l NH4NO3, 1.0 g/l KH2PO4, 

0.7 g/l MgSO4·7H2O, 20 ml/l molasses. 
Maximum ethanol yield, nitrogen and carbon content of 

DDG were obtained in the rice husk hydrolysate medium 
F4. Ethanol yield in F1 medium is significantly (P<0.05) 
lower than F2, F3 and F4. While mean nitrogen content 

of DDG in the F1 medium was significantly (P<0.05) 
lower than that in the F2, F3 and F4 medium,  but  no  
significant  (P > 0.05)  difference was observed between 

F2 and F3 medium. Carbon content of DDG in the F1 
medium was also significantly (P < 0.05) higher than that 
in the F3 and F4 medium, but no significant (P>0.05) 

differences between F1 and F2 and between F3 and F4 
also were observed in the medium. 
 

 
Effect of initial medium pH 
 

Initial medium pH significantly (P<0.05) affected ethanol 
yield, nitrogen and carbon content of DDG (Figure 4). 
This study showed that S. cerevisiae and C. tropicalis 

grew and produced ethanol in co-culture, over a broad 
pH range (3.0-7.0).  

An initial medium pH outside 5.5 to 6.5, decreased 

ethanol yield, nitrogen and carbon content of DDG. 
Ethanol yield at pH 5.5 and 6.0 was significantly (P<0.05) 
higher than that at pH 3.0, 3.5, 4.0, 4.5, 5.0, 6.5 or 7.0, 

with no significant (P > 0.05) difference observed between 

pH 5.5 and 6.0 and 6.0 and 6.5. Nitrogen contents of 
DDG pH 5.5, 6.0 and 6.5 were significantly (P<0.05) 

higher than those at pH 3.5, 4.0, 4.5, 5.0, or 7.0; no 
significant (P > 0.05) difference was observed between 
pH 5.0, 5.5, 6.0 and 6.5. There was significant diference 

in the carbon content mean of DDG at pH 3.0, 3.5, 4.0, 
4.5, 5.0, 5.5, 6.0, 6.5, or 7.0. 
 

 
Effect of incubation period 
 

Incubation period significantly (P<0.05) affected ethanol 
yield (Figure 5A), nitrogen and carbon content of DDG 
(Figure 5B). Ethanol yield increased between 3 and 5 d, 

then was stagnant from 6 to 9 d total incubation. Ethanol 
yields at  2 and 3 d were significantly (P<0.05) lower than 
that at 4 d; 4 d ethanol yield was significantly (P < 0.05) 

lower than that at 5, 6, 7, 8, and 9 d. Differences in 
ethanol yield between 5 and 6 d incubation were not 
significant (P > 0.05). Ethanol yield at 5 d was also 

significantly (P < 0.05) lower than 7, 8 or 9 d, but there 
were no significant (P < 0.05) differences between 6, 7, 8 
and 9 d ethanol yields.  

Nitrogen content of DDG increased between 1 and 7d, 
then relatively stagnant from 7 to 9 days of total 
incubation. Nitrogen contents of DDG 1, 2, 3, 4, 5, and 6 

d were significantly (P<0.05) lower than those at 7, 8 and 
9 d. Differences in nitrogen content of DDG between 1, 2, 
3, 4, 5 and 6 d incubation were relatively small (P < 0.05), 

but  no  significant  (P  > 0.05) differences were observed 
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Figure 4. Effect of initial pH medium on ethanol yield, nitrogen and carbon content of DDG from rice husk 

hydrolysate culture medium w ith supplemented and fermented by co-culture S. cerevisiae and C. tropicalis. Values 

and error bars represent means ± SD (n=5) in same variable (ethanol yield, nitrogen and carbon) w ith different 

subscript show n ANOVA Tukey’s test. a, b, c, d, e, g P<0.05 w ithin respective groups. 

 
 

 

 
 

Figure 5.  Effect of incubation period on ethanol yield (5A) and nitrogen and carbon content (5B) of distillate residue fermented rice 

husk hydrolysate medium by co-culture S. cerevisiae and C. tropicalis. Values and error bars represent means ± SD (n=5) in same 

variable (ethanol yield, nitrogen and carbon) w ith different subscript show n ANOVA Tukey’s test. a, b, c, d, e, f, fg, g and *, **, ***, 

****, **** P<0.05 w ithin respective groups. 

 
 
 

between 7, 8 and 9 d incubation. The mean nitrogen 
content of DDG decreased between 1 and 4 days, but 
was relatively stagnant from 5 to 9 days total incubation. 

Carbon contents of DDG 1, 2, 3, and 4 d were significantly 
(P<0.05) higher than those at 5, 6, 7, 8 and 9 d. 
Differences in nitrogen content of DDG between 1, 2, 3 

and 4 days incubation were relatively small (P < 0.05), 
but no significant (P > 0.05) differences were observed 
between 5, 6, 7, 8 and 9 d incubation. 

DISCUSSION  
 
Studies in other fermentation systems have revealed that 

N deficiency in the fermentation medium leads to slow 
and stuck fermentation rate (Vilanova et al., 2007). N 
sources are very crucial and strongly influence the yeast 

growth and metabolism during fermentation (Beltran et 
al., 2005). The present study shows no significant 
differences in ethanol yield or N and C content of DDG  at  
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exogenous N sources supplemented (NH4NO3, urea and 
NaNO3) with rice husk fermentation media. This indicates 
that the co-culture of S. cerevisiae and C. tropicalis can 

be utilized on the various sources of N for growth and 
stimulation of ethanol production.   

Some investigators have reported varying effects of 

exogenous N source supplemented with lignocellulosic 
fermentation media on ethanol production by yeast. The 
results of this work are similar to several studies which 

reported that supplementation of the various sources of N 
with fermentation media does not significantly affect the 
production of ethanol. Fern´andez-L´opez et al. (2012) 

reported the addition of yeast extract, ammonium sulfate, 
urea, and their combination to medium of sugar rich 
molasses which was obtained during the second step of 

crystallization but did not improve ethanol productivity 
significantly. Wang et al. (2012) reported that, for the 
integrated ethanol-methane fermentation system, 

ammonium and other component in the effluent promoted 
yeast growth and fermentation rate but did not increase 
the yield of ethanol. However, the results of this work 

differ from several studies which reported that the 
supplementation of various N sources to fermentation 
media affected ethanol production. Mongkolchaiarunya et 

al. (2016) reported that ammonium nitrate is better than 
ammonium chloride, ammonium sulfate, urea and 
peptone as N sources for ethanol production from cattail. 

Li et al. (2016) reported that the combination of urea and 
ammonium sulfate as nitrogen sources synergistically 
enhanced ethanol production by S. cerevisiae in a very 

high gravity fermentation of corn starch.  
Initial sugar concentrations before fermentation in the 

growth media can influence the specific rate of yeast 

growth and ethanol production (Tesfaw and Assefa, 
2014). There are varieties of yeast, which are used to 
convert molasses into ethanol and CO2, such as S. 

cerevisiae and Klyureomyces marxianus (Parkash, 
2015). The present study shows that supplementation of 
molasses in the growth media significantly (P<0.05) 

increased ethanol yield and the N and C content in the 
distillers grains. Production of ethanol from molasses-
based media by co-culture fermentation has been 

reported. Eiadpum et al. (2012) reported that immobilized 
co-culture of K. marxianus and S. cerevisiae can improve 
ethanol production from both sugarcane juice and 

blackstrap molasses when the operating temperature 
ranged between 33°C and 45°C and generate maximal 
ethanol concentrations of 81.4 and 77.3 g/l, respectively.  

Carbohydrates and nitrogenous compounds are two 
major components affecting yeast performance in 
fermentation. A high level of N sources significantly 

increased the efficiency of fermentation and yeast yield 
(Tyagi and Ghose, 1980). Increasing the N  concentration  

 

 
 
 

in the fermentation medium can increase the rate of 
fermentation, decrease the duration and lack of nitrogen 
triggers sluggish fermentations (Alexandre and 

Charpentier, 1998; Fleet and Heard, 1992; Varela et al., 
2004). The ratio of N sources to carbon sources in the 
medium can influence yeast growth and metabolism of S. 

cerevisiae (Larsson et al., 1993). N deficiency with a high 
sugar transporter turnover rate results in a loss of sugar 
uptake capacity in the cells (Salmon, 1989; Bisson, 

1999). In the present study, 4 formulations of rice husk 
hydrolysate media with different supplemented inorganic 
nitrogen and molasses significantly (P<0.05) influenced 

ethanol yield, nitrogen and carbon content of DDG.  
The specific rate of yeast growth and ethanol production 

were influenced by pH fermentation medium (Tesfaw and 

Assefa, 2014). In the present work, initial pH of the 
medium affected ethanol yield and the content of N and C 
at DDG. A wide range of optimum pH (4.0 to 8.0) was 

reported for S. cerevisiae JZ1C isolated from rhizosphere 
of Jerusalem artichoke using inulin and Jerusalem 
artichoke tuber as substrate at 35°C (Hu et al., 2012). 

Optimum pH for S. cerevisiae BY4742 was in the range 
of 4.0 to 5.0. When the pH was lower than 4.0, the 
incubation period was prolonged though the ethanol 

concentration was not reduced significantly and when the 
pH was above 5.0, the concentration of ethanol 
diminished substantially (Lin et al., 2012).  Some 

investigators have reported the effect of incubation period 
on ethanol production from lignocellulosic medium by co-
culture fermentation. Wright (1988) reported the 

maximum ethanol production of 4% (w/v) from  wheat 
straw medium after 48 h of incubation, employing 
process of simultaneous saccharification and fermentation 

using T. reesei cellulase and Kluyveromyces fragilis. 
Sharma (2000) reported maximum ethanol yield and 
fermentation efficiency of 0.397 g/g and 77.84%, 

respectively after 36 h of incubation at 30°C using mixed 
culture of S. cerevisiae and P. tannophilus. Verma et al. 
(2000) reported maximum ethanol concentration of 24.8 

g/l at 48 h of incubation from starch medium in a single 
step process by co-culturing of amylolytic yeasts and 
S.cerevisiae.   

In the present study, the maximum ethanol yield 
(20.32%) lower than the theoretical maximum ethanol 
yield of broth hexoses and pentoses is 0.511 kg/kg sugar, 

but higher than the ethanol yield from rice husk which has 
been reported by some investigators. Reddy and Pushpa 
(2012) reported the maximum ethanol yield (1.60%) 

obtained from rice husks, treated with 5% sodium 
hydroxide and fermented by S. cereveceae type 181 at 
pH 5.0 for 7 d. Sopandi and Wardah (2015) reported the 

maximum ethanol yield (2.13 %) gained from rice husk 
hydrolysate  medium with supplement of  4 g/l urea,  3 g/l  



 

 

 

 

 
 
 

NaNO3, 3 g/l NH4NO3, 1 g/l KH3PO4 and 0.7 g/l 
MgSO4·7H2O fermented by co-culturing of S. cerevisiae 
and C. tropicalis for 3 d at 30°C, 60 to 70% relative 

humidity, under dark condition, and 150 rpm agitation) 
incubation. Gaffa and Krakwowiak (1997) reported the 
maximum ethanol yield (10.5%) by S. cerevisiae 

continuous fermentation process from molasses diluted 
tap water (1:2) for 14 d at 27°C.  
 

 
Conclusion 
 

Inorganic nitrogen and molasses supplementation can 
increase the production of ethanol from rice husk 
hydrolysate medium by co-culturing of S. cerevisiae and 

C. tropicalis. Initial pH medium and incubation period 
demonstrated can influence ethanol production by co-
culturing of S. cerevisiae and C. tropicalis from the rice 

husk medium supplemented with molasses. The best 
formulation medium to obtain maximum production of 
ethanol with pH 5.5 and incubation period of 6 days 

comprised of 16.0 g/l urea, 12.0 g/l NaNO3, 12.0 g/l 
NH4NO3, 1.0 g/l KH2PO4, 0.7 g/l MgSO4·7H2O, and 20 ml/l 
molasses in 1000 ml rice husks hydrolysate.  
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This work showed ethanol production by a microbial consortium of Clostridium cellulolyticum and a 

recombinant Zymomonas mobilis (ZM4 pAA1). The ZM4 pAA1 and wild type ZM4 (ZM4 WT) were first 
tested on RM medium (ATCC 1341) containing 2% cellobiose as the carbon source. Ethanol production 
from ZM4 pAA1 was three times higher than that observed from the ZM4 WT. Concomitant with ethanol 

production was the reduction in OD from 2.00 to 1.580. The ZM4 pAA1 was then co-cultured with C. 
cellulolyticum using cellobiose and microcrystalline cellulose , respectively, as carbon sources. Results 
indicate that the ZM4 pAA1 with C. cellulolyticum utilized 2.0 g/L cellobiose, producing as much as 0.40 

mM of ethanol, whereas only 0.20 mM ethanol was detected for the ZM4 WT co-cultured with C. 
cellulolyticum under similar conditions. A consortium of the ZM4 pAA1 and C. cellulolyticum using 7.5 
g/L microcrystalline cellulose gave a far lower ethanol yield than when using cellobiose. In the latter 

case, ethanol production was detected within 5 days, whereas it took about 10 days for ethanol to be 
detectable for the ZM4 WT and C. cellulolyticum. Future efforts will concentrate on identifying suitable 
partners for the ZM4 pAA1, the correct concentration of feedstocks at which synergy will be observed, 

as well as optimize medium formulations and inoculation techniques. 
 
Key words: Biofuel, ethanol, cellulosome, consortium, Zymomonas mobilis, Clostridium cellulolyticum. 

 
 
INTRODUCTION 

 
Zymomonas mobilis is a facultative anaerobic Gram-
negative bacterium belonging to the alpha subdivision of 

the phylum Proteobacteria, class Alpha-Proteobacteria, 
order Sphingomonadales and family 
Sphingomonadaceae. It is rod shaped with dimensions 

1.0-2.0 × 4.0-5.0 µm, motile, does not sporulate, does not 
produce capsules, intracellular lipids or glycogen, optimal 
pH  range  for  growth  is  6  to  7.0,  optimal  temperature 

range is 25 to 31°C, the G + C content of the cellular 
DNA is about 47.5 to 49.5% with an average Tm of 89.3 

to 89.5°C (Gunasekeran et al., 1990). Z. mobilis uses the 
Entner-Doudoroff (ED) pathway which is found in 
microrganisms that are strictly aerobic, conducts 

fermentation with 50% less ATP produced relative to the 
Embden-Meyerhof-Parnas (EMP) pathway, which leads 
to improved ethanol yield (Yang et al., 2016). 
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Clostridium cellulolyticum ATCC 35319 formerly 
identified as strain H10 was isolated in the fall of 1982   
from decayed grass compost packed for 3 to 4 months at 

the Université de Nancy, France. it is a Gram-positive, 
straight to slightly curved rods that are 3 to 6 µm long by 
0.6 to 1.0 µm wide, with a mean G + C content of 41% 

and forms spores in cultures of cellulose media 3 or more 
days old (Petitdemange et al., 1984). C. cellulolyticum 
produces several cellulases, which are re-grouped into 

an extracellular enzymatic complex called cellulosomes 
and cellulolytic activities allow the release of soluble 
cellodextrins from cellulose, which in return permits 

microbial growth (Desvaux, 2005).  
The wild-type Z. mobilis was primarily isolated from 

alcoholic liquids in natural environments containing 

fermentable sugars such as plant saps, and can only 
utilize a limited carbon source, including glucose, fructose 
and sucrose (Weir, 2016). This drawback is a major 

reason why it has not been used extensively for 
bioethanol production on an industrial scale. C. 
cellulolyticum is excellent at cellulose utilization due to 

the presence of cellulosomes, a complex mass of 
enzymes comprised of an array of cellulases and 
hemicellulases, but unlike Z. mobilis has a low yield of 

ethanol production due to its inability to utilize higher 
concentrations of pure cellulosic substrates. It has been 
suggested that there is also an overflow of pyruvate 

higher than the rate of procession of pyruvate ferridoxin 
oxidoreductase (PFO) and lactate dehydrogenase (LDH) 
(Senthikumar and Gunasekaran, 2005) in C. 

cellulolyticum.  
Engineered microbial consortia and co-culturing of wild 

type bacteria have become pivotal tools in biotechnology 

and have been utilized in the production of a wide range 
of products from biofuels to pharmaceuticals. For 
examples, Abate et al. (1996) described ethanol 

production by a co-culture of Z. mobilis and 
Saccharomyces sp. with higher yields and production 
rates than with either microorganism in pure culture. Shin 

et al. (2010) genetically engineered two E. coli strains for 
xylan utilization, with one strain expressing two 
hemicellulases to hydrolyze xylan into 

xylooligosaccharides and another one importing the 
xylooligosaccharides to produce ethanol, with a 55% 
theoretical yield. Similarly, Shou et al. (2007) 

demonstrated a slightly more ideal cooperation using two 
engineered Saccharomyces cerevisiae strains. One 
strain required adenine and overproduced lysine while 

the other strain required lysine and overproduced 
adenine. Singh et al. (2014) co-cultured Pichia stipitis and 
Z. mobilis for bioethanol production from kans grass 

biomass with significant yields and Zhang et al. (2016a) 
employed C. cellulolyticum and hydrogen fermentation 
bacteria for enhanced biohydrogen production from corn 

stover with significant differences seen in the metabolites 
of the co-culture system  over  the  mono-cultures.  Other  

 

 
 
 

reports of successful bio-catalysis based on microbial 
consortia have equally been reported (Fu et al., 2009; He  
et al., 2011; Ho et al., 2011; Li et al., 2011; Quinn et al., 

2016; Reddy and Basappa, 1996; Yaun et al., 2016; 
Zhang et al., 2016b; Zhong et al., 2016). 

In order to improve its industrial appeal in substrate 

utilization and sugar transport, Z. mobilis has been 
genetically modified extensively with significant 
improvements over the wild type, for example Luo and 

Bao (2015), expressed a heterologous β-D-glucosidase 
from Bacillus polymyxa in Z. mobilis, where the signal 
peptide ZMO 1086 facilitated its secretion. Other reported 

efforts include the works of Deanda et al. (1996), Dunn 
and Rao (2014), Yanase et al. (2005) and Yanase et al. 
(2012). To the best of the author’s knowledge, there has 

not been any reported microbial consortium involving Z. 
mobilis and C. cellulolyticum whether as wild types or 
engineered clones for the production of bioethanol. Given 

the immense potentials as previously outlined of these 
two bacteria, it became necessary to establish a testbed 
from which further research would be conducted in order 

to improve the process of bioethanol production. The 
present study aimed to study the effects of using a 
consortium of a recombinant Z. mobilis and C. 

cellulolyticum on the conversion of biomass to bioethanol 
and using this study as a Launchpad for further 
experimental studies and process improvement. 
 
 
MATERIALS AND METHODS 

 

Construction of ZM4 pAA1 

 

Amplification of pBBR1 M CS-3 
 

The vector backbone, pBBR1 MCS-3 (Kovach et al., 1995) w as 

linearized w ith the restriction enzyme KpnI, the linearized vector 

verif ied for size correctness on electrophoresis gel to give a band 

size of 5.2 kb. The fragment w as PCR amplif ied using Phusion DNA 

polymerase (NEB), w ith the PCR conditions set at 98°C for 1 min, 

98°C for 30 seconds, 56°C for 30 s for annealing and 72°C for 90 s 

for extension. The cycle w as repeated 35 times from the second to 

the fourth step, a f inal extension for 5 min at 72°C and a hold at 

4°C. 

 

 

Amplification of celZ and celY genes from Erwinia 

chrysenthemi  
 
The celY endoglucanase gene and celZ endoglucanase gene w ith 

the ZM4 promoter from pLOI 2352 (kindly provided by Professor L. 

Ingram, University of Florida) w ere individually amplif ied using 

Phusion DNA polymerase (NEB). For the celY gene, the PCR 

condition w as set at 98°C for 1 min, 98°C for 30 s, 72°C for 45 s (to 

include annealing and extension). The cycle w as repeated 35 times 

from the second to the merged annealing and extension steps, a 

f inal extension for 5 min at 72°C and a hold at 4°C. Similar 

conditions w ere used for the celZ gene w ith the ZM4 promoter but 

w ith the annealing temperature set at 54°C for 30 s and extension 

time for 45 s. The amplicons w ere verif ied on the gel for size 

correctness and further sequenced for correctness.  
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Table 1. List of primers. 

 

Primer name Sequences 

pBBR1mcs-3 (forward) AGGGATAAGGTACCGGGCCCCCC 

pBBR1mcs-3 (reverse) GGTTGATCCAGCTTTTGTTCCCTTT 

celZ with ZM4 promoter (forward) AAAAGCTGGATCAACCGGCAATTT 

celZ with ZM4 promoter (reverse) CTCCTTCTTCAATTAGTTACAGCTACCAA  

celY (forward) CTAATTGAAGAAGGAGAATGAATGGGAAAGCC 

celY (reverse) CTCCTTCTTTATTTACCGCGCGCCAACATCAC 

gfor-betaglc fusion (forward) GTAAATAAAGAAGGAGTAAGAATGACGAACAA  

gfor-betaglc fusion (reverse) CCGGTACCTTATCCCTCTAACATGGAATTCAG 

 
 

 
Amplification of glucose-fructose oxidoreductase (GFOR) 

leader sequence of Z. mobilis and Β-glucosidase gene of 
Ruminococcus albus in Z. mobilis.  

 

The β-glucosidase gene from R. albus w as cloned and 

translationally fused to the glucose-fructose oxidoreductase (gfor) 

leader sequence of Z. mobilis for export; resulting in 61% secretion 

and 0.49 g ethanol yield per g cellobiose (Yanase et al., 2005). To 

amplify the 159 bp leader sequence of the glucose-fructose 

oxidoreductase gene, the reverse primer w as designed to include 

10 bp forw ard primer of the β-glucosidase gene. Similarly, the 

forw ard primer of the β-glucosidase gene w as designed to include 

10 bp of the complimentary sequence of the gfor leader reverse 

primer sequence. The β-glucosidase gene from the genomic DNA 

of R. albus (kindly provided by Professor P. Weimer, University of 

Wisconsin) and the leader sequence of the gfor gene of Z. mobilis, 

w hich w as fused to the β-glucosidase gene, w ere amplif ied using 

synthetic oligonucleotide primers (Invitrogen). The PCR condition 

used w as the same as previously described; how ever, the 

annealing temperature w as 65°C. The amplicons w ere verif ied by 

DNA gel electrophoresis and sequenced for correctness (Table 1). 

 

 

Cloning and assembly of plasmid pAA1 
 

The cloning and expression of these three genes w as to expand the 

substrate utilization range of Z. mobilis to include larger 

oligodextrins. These three fragments, ZM4 promoter w ith celZ, celY 

and gfor-betaglucosidase fusion w ere cloned into the KpnI site of 

the broad host range vector pBBR1MCS-3 (tcr). The cloning w as 

performed using the Life Technologies Gene Art Seamless Cloning 

and Assembly kit (Life technologies). This kit w as optimized to 

clone up to 4 DNA fragments w ith a total vector and insert size of 

13 kb.  

Escherichia coli NEB-10 Beta competent cells w ere transformed 

w ith the cloned vector pAA1 as described in New  England Biolabs 

(NEB) manual. The transformants w ere plated out on lysogeny 

medium (LB) containing 40 µL of 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal) for blue/w hite screening and w ith 15 

µg/ml of tetracycline. To select for the right clone, the plasmid pAA1 

and the vector backbone pBBR1MCS-3 w ere extracted from their 

respective host cells and subsequently digested using KpnI and 

NotI HF restriction enzymes (NEB) w hich cut at different positions 

w ithin the vector backbone. Furthermore, the vectors pAA1 and 

pBBR1MCS-3 w ere digested w ith the restriction enzyme NdeI 

(NEB). NdeI cut site CAˆTATG exists w ithin the insert that produced 

pAA1 but not on the vector backbone pBBRIMCS-3.  

The cloned pAA1 w as completely sequenced by Eurofins MWG 

operon  using   the   Sanger   sequencing  method  and  verif ied  for 

correctness and thereafter used for the transformation of ZM4 WT 

using the Gene Pulser (Bio-Rad) as described by Liang and Lee 

(1998) to create ZM4 pAA1. The Z. mobilis cultures w ere grow n in a 

stationary f lask at 30°C to an absorbance (600 nm) of 0.3 to 0.4. 

The cells w ere harvested by centrifugation at 13000 g for 10 

minutes at 4°C. The cells from an original 100-ml culture w ere 

suspended in 10 ml of sterile 10% glycerol (supplemented w ith 

0.85% NaCl), centrifuged, and f inally re-suspended in 2 to 3 ml of 

10% glycerol. The plasmid pAA1 w as extracted from E. coli NEB-10 

Beta, suspended in w ater and concentrated to 3000 ng/µl DNA 

before electroporation.  

The Gene Pulser (Bio-Rad) for generating exponential decay 

pulses w ere set at a peak voltage of 1.5 kV and 25 µF capacitance. 

A 200 µL aliquot of  the Z. mobilis cultures w ere mixed w ith 10 µL of 

pAA1 in a chilled electroporation chamber w ith an electrode gap of 

0.2 cm and held on ice for 5 min. Thereafter, the mixture of cells 

and DNA w as pulsed and immediately after pulsing, the cells w ere 

mixed w ith 1 ml of RM medium for outgrow ing at 30°C for 4 h. At 

the end of this outgrow th period, the cells w ere diluted w ith RM 

medium and plated on RM agar containing 15 µg/ml of tetracycline. 

The Z. mobilis cultures w ere also transformed w ith the original 

vector backbone pBBR1MCS-3 to create ZM4 pBBR1MCS-3 and 

plated on RM agar (15 µg/ml of tetracycline) to verify the expression 

of the plasmid w ith the antibiotic marker in a new  host but w ithout 

the inserts as seen in pAA1. ZM4 pAA1 and ZM4 pBBR1MCS-3 

w ere inoculated into RM broth containing 15 µg/ml of tetracycline 

and 30 µg/ml of gentamicin and incubated at 30°C for 48 h. 

Gentamicin w as added because Z. mobilis is naturally resistant to it 

up to 50 µg/ml, therefore most potential contaminants w ere not 

expected to survive under that condition. Thereafter, OD w as 

determined at 600 nm using the spectrophotometer (Spectronic 

20D+). 

To further verify that the recombinants ZM4 pAA1 and ZM4 

pBBR1MCS-3 w ere indeed Z. mobilis, the cells w ere once again 

grow n in RM medium w ith 2% glucose as the carbon source and 

supplemented w ith 15 µg/ml of tetracycline. The ZM4 WT w as also 

grow n in RM medium w ith 2 percent glucose as the carbon source 

and supplemented w ith 30 µg/ml of gentamicin. Cells w ere 

harvested after 48 h and genomic DNA extraction w as performed 

using the FastDNA spin kit (MP Biomedicals). The leader sequence 

of the gfor is unique to Z. mobilis and so this gene fragment w as 

individually amplif ied from the genomic DNA extracted from ZM4 

pAA1, ZM4 pBBR1MCS-3 and ZM4 WT. Band sizes of 

approximately 200 bp w as observed for the 3 amplicons on the 

electrophoresis gel. 

The recombinant ZM4 pAA1 (tetracycline resistant) w as grow n in 

RM medium containing 2% glucose supplemented w ith 15 µg/ml of 

tetracycline. The pAA1 w as then extracted from ZM4 pAA1 using 

the  5  Prime  fast  plasmid extraction kit (5 Prime) and the inserts of  
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Figure 1. Optical density of the ZM4 pAA1 and ZM WT. Starting OD w as 2.0 and decreased 

as insoluble cellobiose w as consumed and ethanol production increased for the ZM4 pAA1. 

OD for the ZM4 WT remained the same, indicating it failed to utilize the substrate. 

 
 
 
ZM4celZ, celY and gfor-beta-glucosidase individually amplif ied from 

the plasmid pAA1 using the Q5 high f idelity DNA polymerase (New  

England Biolabs), verif ied for size correctness on gel 

electrophoresis and subsequently sequenced for correctness. 

 

 

Ethanol production test 

 

Ethanol production from cellobiose using recombinant ZM 4 

pAA1 and ZM 4 WT  
 

Cultures of ZM WT w ere grow n in RM medium containing 2% 

glucose and supplemented w ith gentamicin (30 µg/ml). The 

recombinant ZM4 pAA1 w ere similarly grow n in RM medium but 

w ere supplemented w ith 15 µg/ml of tetracycline in order to 

maintain the vector (pAA1) in addition to 30 µg/ml of gentamicin. 

Cells w ere harvested after 24 h, w ashed thoroughly in phosphate 

buffered saline (PBS, pH 7.2), re-suspended in RM medium 

containing 2% cellobiose to give an optical density (OD) of 2.0 and 

the appropriate antibiotics added in each medium as previously 

described. The cultures w ere incubated at 30°C in a shaking 

incubator (New  Brunsw ick) at 150 rpm. The ODs w ere determined 

every tw enty-four hours for 7 days and samples taken from the 

cultures for ethanol quantif ication starting from 48 h after original 

inoculation and every 24 h thereafter for three days. 
 

 

Ethanol production from cellobiose and microcrystalline 

cellulose using ZM 4 pAA1, ZM 4 WT and Clostridium 

cellulolyticum 
 

ZM4 pAA1 and ZM4 WT cultures w ere grow n to OD of 0.4 to  0.6  in  

RM medium containing glucose as carbon source. The cultures 

w ere w ashed in PBS (pH 7.2), re-suspended, and then kept on ice 

until further use (maximum time <20 min). C. cellulolyticum w as 

grow n in Clostridium medium (ATCC 1368) containing 7.5 g/L of 

microcrystalline cellulose as the carbon source to an OD of 0.4 to 

0.6. The cultures w ere subsequently used to inoculate Clostridium 

medium containing cellobiose and microcrystalline cellulose as 

carbon sources, respectively. For the mono cultures of ZM4 pAA1, 

ZM4 WT and C. cellulolyticum, the medium w as inoculated w ith 5% 

inoculum size (v/v) and for the consortium, the medium w as 

inoculated w ith 2.5% each of the inoculum size. For the Clostridium 

medium containing cellobiose, 2 g/L of the oligosaccharide 

cellobiose w as used, w hereas for the regular Clostridium medium, 

7.5 g/L of cellulose w as used.  

 
 
RESULTS AND DISCUSSION 
 
From Figures 1 and 2, it can be seen that the ZM4 pAA1 

utilized the cellobiose and produced three times as much 
ethanol after 5 days, respectively, than did the ZM4 WT. 
The ethanol produced and analyzed using the gas 

chromatography technique (Shimadzu) by the ZM4 pAA1 
was significantly different from that produced by the ZM4 
WT (p = 0.03761, SigmaPlot). The ethanol detected in 

the wild type could have come from the residual glucose 
from after wash transferred into the medium at 
inoculation. As ethanol was being produced, the optical 

density (OD) of the recombinant culture declined gradually 
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Figure 2. Ethanol production from RM medium containing 2% cellobiose as the carbon source. Error 

bars represent standard deviations among three replicates. 

 
 

 
to 1.58 after 7 days. Further decline in OD was observed 
but with no further change after 1.44. No change was 

detected for the ZM4 WT for the entire duration. 
As seen in Figure 3, ZM4 pAA1 produced the most 

ethanol and was consistent across the three batches 

whereas ethanol production was not observed at all for 
ZM4 WT across the three batches. C. cellulolyticum 
produced ethanol once as can be seen from batch 1 

(Figure 3) but none in subsequent batches.  
In Figure 4, ethanol production can be observed from the 
two conditions, with ZM4 pAA1 and C. cellulolyticum 

producing more ethanol than ZM4 WT and C. 
cellulolyticum. In a study by Payot et al. (1998) detailing 
the metabolism of cellobiose by C. cellulolyticum growing 

in continuous culture, it was reported that C. 
cellulolyticum was able to metabolize only a small 
quantity of soluble carbohydrates (3 g/L), with the molar 

growth yield reduced when the initial cellobiose 
concentration exceeded (2 g/L). In this work, the 
concentration of cellobiose utilized was originally set at 5 

g/L and the results obtained (not shown) clearly indicated 
that such concentration negatively impacted growth of the 
C. cellulolyticum but the recombinant ZM4 pAA1 could 

have aided in rescuing the situation, with subsequent 
tests using 2 g/L cellobiose showing an improvement. 
The ZM4 WT however, was unable to do same, possibly 

due to the lack of the β-glucosidase gene and also by the 

use of a sugar source that could not adequately support 
its growth. Furthermore, as described by Payot et al. 

(1998), C. cellulolyticum growth was limited due to low 
rate of NADH re-oxidation leading to an intracellular 
accumulation of the reduced nucleotide and as described 

by Giallo et al. (1983), acetate was the main product for 
the continuous cultures of Clostridium. The acetate 
formation was found to increase with increasing carbon 

flow, leading to a high ATP production and to an 
insufficient rate of NADH regeneration (Giallo et al., 
1983). They further described the ability of C. 

acetobutylicum to induce metabolic shifts to produce 
solvents such as ethanol, butanol and acetone and this 
shift was associated with high intracellular ATP and 

NAD(P)H. It does not appear that C. cellulolyticum is able 
to induce such metabolic shifts to produce reduced 
compounds such as ethanol. The result obtained from the 

consortium of recombinant ZM4 with C. cellulolyticum 
and ZM4 WT with C. cellulolyticum is consistent with 
previously observed findings, therefore the ethanol 

produced in the medium is likely as a result of the 
secretion of the fused β-glucosidase into the medium by 
ZM4 pAA1 and the ability of ZM4 WT to convert glucose 

released from cellobiose to ethanol, respectively. Figure 
5 shows ethanol production from microcrystalline 
cellulose by C. cellulolyticum, ZM4 pAA1 and ZM4 WT in 

five days. 
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Figure 3. Ethanol production from cellobiose. Error bars represent standard deviations among 

three replicates. 

 

 
 

 
 
Figure 4. Ethanol production from cellobioise. Error bars represent standard deviations among 

triplicate samples. 
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Figure 5. Ethanol production from microcrystalline cellulose. Error bars represent standard deviations 

among three replicates. 

 
 

 
C. cellulolyticum showed ethanol production for only 

one batch but no ethanol production was detected from 

ZM4 pAA1 and ZM4 WT respectively. No ethanol 
production was detected in the first 5 days but was seen 
within 10 days for C. cellulolyticum. The amount of 

ethanol produced by C. cellulolyticum only was far lower 
than seen when C. cellulolyticum was co-cultured with 
ZM4 pAA1 using cellobiose as the carbon source. 

In the consortium, Figures 6a and b, ethanol production 
was detected for C. cellulolyticum with ZM4 pAA1 for the 
three batches after 5 days and increased after 10 days 

while C. cellulolyticum with ZM4 WT produced ethanol in 
batches 1 and 2 but not batch 3 and only detected after 
10 days. This observation suggested that the consortium 

involving recombinant ZM4 was more efficient than that 
involving the wild type. This pattern could be seen from 
both the time it took for ethanol to be detected and the 

quantity of ethanol detected. There appear to be only 
slight increases in ethanol production from the 
consortium involving the recombinant ZM4 pAA1 from the 

10-day culture as compared to that produced after 5 
days, suggesting that maximum ethanol yield could be 
possible in slightly over 5 days. The consortium involving 

the ZM4 WT produced less ethanol and that was detected 
only after 10 days, suggesting less efficiency in synergy. 

Conclusion 
 

The recombinant Z. mobilis bearing the plasmid vector 
pAA1 supported the findings of Yanase et al. (2005) in 
which ZM4 re-engineered with β-glucosidase gene from 

Ruminococcus albus was able to secrete 61% through 
the cytoplasmic membrane which resulted in the 
production of 0.49 g ethanol per gram of cellobiose. From 

this work, the highest ethanol concentration determined 
for recombinant ZM4 pAA1 was approximately 0.06 mM, 
whereas the wild type showed no evidence of ethanol 

production after 5 days on C. cellulolyticum medium 
containing cellobiose. Despite the tagging of the β-
glucosidase gene to gfor, only about 36% of the total 

activity was reported to be located on the cell surface 
fraction, with 20% of the activity on the periplasmic 
fraction (Yanase et al., 2005). With the introduction of 

celZ and celY genes, the recombinant ZM4 with C. 
cellulolyticum was able to indicate ethanol production 
from microcrystalline cellulose within 5 days whereas the 

consortium of the ZM4 WT took twice that amount of time 
and produced significantly less ethanol. The recombinant 
ZM4 and ZM4 WT did not produce ethanol using 

cellulose as the carbon source as expected but C. 
cellulolyticum alone  did  after  10 days,  twice the  time  it 
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Figure 6. Ethanol production after 5 (A) and 10 (B) days using microcrystalline cellulose as a carbon 

source. Error bars represent standard deviations among three replicates. 

 

 
 
took to make ethanol for the consortium.  

This preliminary study was initiated to study the effect 
of the microbial consortium on ethanol production. It is far 
from exhaustive, did not establish a convincing case for 

the consortium using the two microorganisms and more 
investigation is required in order to optimize the desired 
synergy between  the  ZM4  pAA1  and  C. cellulolyticum. 

The concentration of microcrystalline cellulose used was 

7.5 g/L, but further investigation is needed to determine 
the best concentration at which a synergy can be clearly 
observed. Furthermore, the culture growth conditions and 

incubation times chosen could also be a major factor in 
contributing to the lack of a clear evidence of synergy; 
therefore,  different   culture   conditions  and  time  points  

(A) 

 
(B) 

 



 
 

 
 
 

would be tested to better investigate the consortium.  
Based on the wide differences in the genetics and 

physiology of the two bacteria used, the low yields could 

simply have been as a result of metabolic bottlenecks, 
which were not investigated in this preliminary study. 
Batch culture conditions were investigated and the need 

to investigate same conditions using the continuous 
culture conditions cannot be overemphasized. Using pure 
cellobiose and pure microcrystalline cellulose only, were 

insufficient, other carbon sources to reflect natural 
conditions would be investigated  

Finally, the recombinant ZM4 pAA1 would be partnered 

with other known cellulose degraders other than the one 
used here to further understand its efficiency in a 
consortium.  
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Species within the Staphylococcus genus are important mastitis pathogens. Studies to describe 
virulence and antibiotic resistance as well as rapid techniques that permit analyses strains are needed. 

The aims were to identify and characterize Staphylococcus spp. isolated from mastitic milk, and to 
optimize multiplex polymerase chain reactions (PCR). Staphylococci previously isolated from milk of 
dairy cows with subclinical mastitis were analyzed. PCR was completed to amplify nuc, sodA, spa, agr 

locus, virulence factors, and antibiotic resistance genes. DNA sequencing of sodA and spa genes was 
performed and antibiograms were carried out on all  isolates. In a group of 49 staphylococci, S. aureus 
was the most prevalent, followed by S. hyicus, S. xylosus, S. chromogenes. Following optimization of 

multiplex PCR, virulence factor genes were identified in the majority of isolates. The enterotoxin genes, 
seh and selx were highlighted. All hemolysin genes were detected in 28.6% of isolates. Antibiotic 
resistance was evaluated and the majority of isolates (69.4%) were resistant to penicillin. Among the 

genes encoding antibiotic resistance, mecA was identified, while two methicillin-resistant S. aureus 
were typed as spa type 605, agr type II, and one identified as SCCmec type IVa. The types t605 and agr II 
were detected in the majority of S. aureus assessed. The findings emphasized the importance of 

preventing Staphylococcus infection in dairy cows. Effective dairy herd management and information 
on milk quality are essential to prevent mastitis pathogens. 
 

Key-words: Antibiotic, staphylococci, toxins, virulence, genes. 
 
 

INTRODUCTION 
 
Bovine mastitis affects the dairy industry worldwide, and 

is associated  with  reduced  milk  quality  and  production  

(Silva et al., 2013). Coagulase-positive staphylococci 

(CPS)  are  widely  studied as a common cause of clinical  
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and subclinical mastitis
 
(Ote et al., 2011; Rajic-Savic et 

al., 2015), and the most important causative agent in this 
bacterial group is Staphylococcus aureus (Ote et al., 

2011).
 

In addition, the relevance of coagulase-negative 
staphylococci (CNS) as a cause of mastitis in dairy cows 
has also been shown (Silva et al., 2014). CNS research 

has predominantly focused on humans, and the 
enterotoxigenic potential of CNS has not been 
extensively explored, although it has been suggested that 

CNS from bovine intrammamary infection (IMI) could be a 
potential source of staphylococcal superantigens (SAgs) 
(Park et al., 2011). 

SAgs, e.g. staphylococcal enterotoxin (SE) and toxic 
shock syndrome toxin-1 (TSST-1), were first identified in 
S. aureus (Park et al., 2011), and have been well 

characterized. The emetic activity of SEs has been 
demonstrated (Hu and Nakane, 2014); thus, there is a 
potential to cause foodborne disease (Jorgensen et al., 

2005). Staphylococcus aureus may carry genes for 
production of other toxins such as Panton-Valentine 
leukocidin, toxic shock syndrome toxin and exfoliative 

toxins (Jarraud et al., 2002). 
The importance of virulence factors in Staphylococcus 

genus and the highly clonal structure within the S. aureus 

population have been highlighted in medicine, and could 
potentially help in treatments (Ote et al., 2011). However, 
antibiotic resistance is a concern since studies have 

demonstrated the emergence of resistant isolates from 
bovine mastitis (Moon et al., 2007; Silva et al., 2014).

 

Thus, the aims of the present study were to identify, and 

characterize Staphylococcus spp. isolated from mastitic 
milk, and to optimize several multiplex polymerase chain 
reaction (PCR) in order to simultaneously identify the 

presence of different virulence factor genes. 
 
 
MATERIALS AND METHODS 

 

Origin and collection of isolates 

 

The collection of bacterial isolates belonging to Hygiene and Dairy 

Laboratory, University of São Paulo, w as used. From this collection, 

isolates from mastitic milk previously identif ied as Staphylococcus 

spp. w ere selected. Forty-nine isolates w ere selected from three 

different dairy farms located in São Paulo State, region of Piracicaba 

city, Brazil. 

The isolates w ere obtained in a previous study performed by 

Hygiene and Dairy Laboratory’s group, in w hich dairy cow s w ere 

diagnosed w ith subclinical mastitis after screening using California 

Mastitis Test. Mastitic milk samples collected from September to 

October of 2013 w ere used.  For the bacterial culturing, standard 

microbiological methods included colony morphology on Baird 

Parker Agar (BPA, Difco BD®, Nova Jersey, EUA) w ith egg yolk 

tellurite supplement (Laborclin®, Pinhais, Brazil), Gram staining, 

catalase, and coagulase test w ere completed to identify 

staphylococci, and all isolates w ere stored at -20°C. 

 

 

DNA extraction, polymerase chain reaction and molecular 

typing 

 

Each   isolate   w as   inoculated   into   Brain   Heart   Infusion  (BHI,  

Rodrigues et al.          85 

 
 
 
OxoidTM, Hampshire, UK) broth and incubated at 37°C for 24 h. 

Aliquots of each culture w ere centrifuged and the supernatant w as 

discarded. The pellet w as used to extract DNA using “AxyPrepTM 

Blood Genomic DNA Miniprep kit” (Axygen Scientif ic Inc., Union 

City, USA), according to manufacturer's instructions. Agarose gel 

electrophoresis w as completed to verify the extraction, and the 

genomic DNA w as stored at -20°C. 

Coagulase-positive and coagulase-negative staphylococci 

previously identif ied by coagulase test w ere confirmed by detecting 

the coa gene through PCR. The PCR amplif ication of coa gene 

described by Aarestrup et al. (1995) w as modif ied by using 0.75 

mM of MgCl2 in each reaction, and the PCR cycles used w ere as 

follow s: 95°C for 5 min; 30 cycles at 95°C for 30 s, 55°C for 2 min, 

and 72°C for 4 min; and f inally at 72°C for 10 min. When confirmed 

as coagulase-positive, multiplex PCR w as performed to identify S. 

aureus, S. intermedius and S. hyicus according to Sasaki et al. 

(2010). Other strains w ere identif ied by amplifying the sodA gene, 

and through DNA sequencing using Sanger method (Silva et al., 

2014). 

The SEs (SEA-SEE, SEG-SElJ, SElK-SElQ, SER-SET, SElU, 

SElV and SElX), hemolysins (alpha, beta, delta, gamma component 

A, B and C and gamma-variant hemolysin), Panton-Valentine 

leukocidin (PVL), exfoliative toxins (ETA, ETB and ETD) and toxic 

shock syndrome toxin (TSST-1) genes w ere assessed by PCR. 

Primers used in this study are show n in Table 1.  

Single PCR w as initially performed for genes and positive 

(extracted DNA from strains belonging to Hygiene and Dairy 

Laboratory collection, University of São Paulo) and negative 

controls w ere incorporate into each run. Next, primers w ere 

combined in the same reaction w hen possible depending on 

amplif ication characteristics e.g. annealing temperature, number of 

PCR cycles and concentration of MgCl2. The multiplex reactions 

w ere as follow s: 1X PCR Buffer, 1U GoTaq® Hot Start Polymerase 

(Promega Corporation, Madison, USA), MgCl2 (Promega 

Corporation, Madison, USA) concentration w as variable, 10 ρmol of 

each primer (synthesis by Sigma-Aldrich®, São Paulo, Brazil), 200 

µM deoxynucleotides (Promega Corporation, Madison, USA), 

template DNA (approximately 40 ng) and ultrapure w ater to bring 

the f inal reaction volume to 25 µL. Genes that w ere not incorporate 

into multiplex PCR, w ere amplif ied by uniplex PCR using 2.5 mM of 

MgCl2 and thermally cycled at 94°C for 5 min, 30 cycles at 94°C for 

2 min, 48°C for 1 min, and 72°C for 1 min, and then once at 72 °C 

for 10 min. 

agr type w as developed according to Shopsin et al. (2003) and 

the amplif ication of spa region w as carried out follow ing the w ebsite 

http://w w w .ridom.com/, the repeats w ere identif ied for spa types 

detection after sequencing by Sanger method. 

 

 

Antibiotic resistance detection 

 

Antibiotic resistance of each isolate w as tested using the agar 

diffusion method follow ing the Clinical and Laboratory Standards 

Institute guidelines (Clinical Laboratory Standards Institute, 2015). 

The antibiotics tested included penicillin, cefoxitin, oxacilin, 

erythromycin, clindamycin, chloramphenicol, ciprofloxacin, 

vancomycin, tobramycin, tetracycline and gentamicin. The tetK, 

tetL, tetM (Gómez-Sanz et al., 2010), ant(4’)-Ia (van de Klundert et 

al., 1993), ermA, ermB, ermC (Gómez-Sanz et al., 2010), mecA 

(Moon et al., 2007) and mecC (Cuny et al., 2011) genes w ere 

detected by PCR, and Staphylococcal Cassette Chromosome mec 

(SCCmec) types I to V in methicillin-resistant S. aureus w ere 

identif ied as described by Kondo et al. (2007). 
 
 

RESULTS  
 

Of  the  total  isolates,  46   (93.9%)   were   confirmed  as  
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Table 1. Primers sequences used to amplify virulence factors. 

 

Gene Oligonucleotide sequence (5´3´) bp Reference 

sea 
TTGGAAACGGTTAAAACGAA 

GAACCTTCCCATCAAAAACA 
120 Johnson et al. (1991) 

seb 
TCGCATCAAACTGACAAACG 

GCAGGTACTCTATAAGTGCC 
478 Johnson et al. (1991) 

sec 
GACATAAAAGCTAGGAATTT 

AAATCGGATTAACATTATCC 
257 Johnson et al. (1991) 

sed 
CTAGTTTGGTAATATCTCCT 

TAATGCTATATCTTATAGGG 
317 Johnson et al. (1991) 

see 
AGGTTTTTTCACAGGTCATCC 

CTTTTTTTTCTTCGGTCAATC 
209 Mehrotra et al. (2000) 

seg 
AAGTAGACATTTTTGGCGTTCC 

AGAACCATCAAACTCGTATAGC 
287 Omoe et al. (2002) 

seh 
GTCTATATGGAGGTACAACACT 

GACCTTTACTTATTTCGCTGTC 
213 Omoe et al. (2002) 

sei 
GGTGATATTGGTGTAGGTAAC 

ATCCATATTCTTTGCCTTTACCAG 
454 Omoe et al. (2002) 

selj 
CATCAGAACTGTTGTTCCGCTAG 

CTGAATTTTACCATCAAAGGTAC 
142 Nashev et al. (2004) 

selk 
TAGGTGTCTCTAATAATGCCA 

TAGATATTCGTTAGTAGCTG 
293 Omoe et al. (2005) 

sell 
CACCAGAATCACACCGCTTA 

CTGTTTGATGCTTGCCATTG 
240 Cremonesi et al. (2005) 

selm 
ATCATATCGCAACCGCTGAT 

TTCAGTTTCGACAGTTTTGTTGTC 
626 Ote et al. (2011) 

seln 
ATGAGATTGTTCTACATAGCTGCAAT 

AACTCTGCTCCCACTGAAC 
680 Ote et al. (2011) 

selo 
AAATGATTCTTTATGCTCCG 

AAAGCACATTGTCATGGTGA 
300 Ote et al. (2011) 

selp 
TGATTTATTAGTAGACCTTGG 

ATAACCAACCGAATCACCAG 
396 Omoe et al. (2005) 

selq 
AATCTCTGGGTCAATGGTAAGC 

TTGTATTCGTTTTGTAGGTATTTTCG 
122 Omoe et al. (2005) 

ser 
GGATAAAGCGGTAATAGCAG 

GTATTCCAAACACATCTAAC 
166 Omoe et al. (2005) 

ses 
CCCCGGATCCGATGAATCTAGACCTAAAATAG 

CCCCGTCGACTTATTGGGAATAAAC 
794 Ono et al. (2008) 

set 
CCCCGGATCCGATTCTCGTGAAGGTTTAAAAG 

CCCCGTCGACCTATTTTTCCATATATATATC 
671 Ono et al. (2008) 

selu 
ATGGAGTTGTTGGAATGAAGT 

TTTTTGGTTAAATGAACTTCTACA 
796 Fischer et al. (2009) 

selv 
GCAGGATCCGATGTCGGAGTTTTGAATCTTAGG 

TAACTGCAGTTAGTTACTATCTACATATGATATTTCGACATC 
720 Thomas et al. (2009) 

selx 
AGCAGACGCGTCAACACAAA 

ACTTGTTCAATGTCATTAACACTTTTCAC 
612 Wilson et al. (2011) 

hla 
CTGATTACTATCCAAGAAATTCGATTG 

CTTTCCAGCCTACTTTTTTATCAGT 
209 Jarraud et al. (2002) 

hlb 
GTGCACTTACTGACAATAGTGC 

GTTGATGAGTAGCTACCTTCAGT 
309 Jarraud et al. (2002) 
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Table 1. Contd. 

 

hld 
AAGAATTTTTATCTTAATTAAGGAAGGAGTG 

TTAGTGAATTTGTTCACTGTGTCGA 
111 Jarraud et al. (2002) 

hlg 
GTCAYAGAGTCCATAATGCATTTAA 

CACCAAATGTATAGCCTAAAGTG 
535 Jarraud et al. (2002) 

hlg-v 
GACATAGAGTCCATAATGCATTYGT 

ATAGTCATTAGGATTAGGTTTCACAAAG 
390 Jarraud et al. (2002) 

eta 
ACTGTAGGAGCTAGTGCATTTGT 

TGGATACTTTTGTCTATCTTTTTCATCAAC 
190 Jarraud et al. (2002) 

etb  
CAGATAAAGAGCTTTATACACACATTAC 

AGTGAACTTATCTTTCTATTGAAAAACACTC 
612 Jarraud et al. (2002) 

etd 
AACTATCATGTATCAAGG 

CAGAATTTCCCGACTCAG 
376 Yamaguchi et al. (2002) 

tst 
TTCACTATTTGTAAAAGTGTCAGACCCACT 

TACTAATGAATTTTTTTATCGTAAGCCCTT 
180 Jarraud et al. (2002) 

pvl 
ATCATTAGGTAAAATGTCTGGACATGATCCA 
GCATCAAGTGTATTGGATAGCAAAAGC 

443 Lina et al. (1999) 

 
 
 

coagulase-positive through amplification of coa gene. 

The species observed were S. aureus (42 strains, 85.7% 
of isolates), S. hyicus (4, 8.2%), S. xylosus (2, 4.1%) and 
S. chromogenes (1, 2.0%) (Table 2). 

In multiplex PCR optimization, a total of 11 multiplex 
PCR (Table 3) to detect virulence genes (sea, seb, sec, 
sed, see, seg, seh, seli, selj, selk, sell, selm,  seln,  selo, 

selp, selq, ser, selu, pvl, tst, hla, hlb, hld, hlg and hlg-v) 
were performed. Multiplex PCR for 25 genes were 
evaluated across 11 reactions, which permitted 

optimization of the analyses and reducing costs. 
Forty-two isolates (85.7% of isolates) were positive for 

one or more enterotoxin gene. The enterotoxin genes 

observed were seh (59.2%) and selx (57.1%) followed by 
seg (51.0%), ser (46.9%), selu (38.8%), sell (24.5%), selo 
(18.4%), seln and selp (6.1% each one), seb, selj, selk 

and selm, (4.1% each one) and selq (2,0%). sea, sec, 
sed, see, sei, ses, set and selv genes were not detected. 
In this study, 30 profiles were observed across 49 

isolates. Among the profiles identified in this study, 
seg+seh+ser+seu+selx, was the most abundant (10.2% 
of strains), followed by seg+seh, 

seg+seh+sem+seo+ser+seu+selx,seg+seh+seo+ser+seu
+selx, seh, seh+seo+ser+selx, seh+ser+selx and sel 
(4.1% each profile). In seven isolates, enterotoxin genes 

were not identified. All hemolysin genes were detected, 
that is hla (38.8%), hlb (55.1%), hld (32.7%), hlg (42.9%) 
and hlg-v (53.1%). The presence of all hemolysins was 

the most frequent profile (28.6%), and 19 of the strains 
(38.7%) did not carry hemolysin genes. Genes encoding 
exfoliative toxins, pvl and tst were not identified. 

Regarding antibiotic resistance, isolates were resistant 
to penicillin (69.4% of isolates), cefoxitin (8.2%), 
erythromycin, chloramphenicol, tetracycline (4.1% to 

each antibiotic), tobramycin, clindamycin, oxacilin (2.0% 
to each antibiotic). One isolate demonstrated intermediate 

resistance to gentamicin, erythromycin, clindamycin, 

while all strains were sensitive to vancomycin and 
ciprofloxacin. Across all strains, three isolates were multi-
drug resistant. Herein, ermA, ermC, tetK and tetM genes 

were detected (Table 2). Of the isolates resistant to 
cefoxitin (4 isolates, spa type t605 isolated from farm A) 
only 2 isolates were positive for mecA, one was identified 

as SCCmec type IVa and another was non-typeable. In 
addition, the methicillin-resistant S. aureus (MRSA) 
strains belong to spa typing t605 and agr type II, and the 

absence of a novel mecA homologue was observed. In 
spa typing detected across 42 S. aureus (Table 2), the 
type most frequent was t605 (83.3%), also it was present 

on all farms, followed by t267 (9.5%), t521 (4.8%) and 
t9129 (2.4%). The agr types detected were I (11.9%) and 
II (88.1%). 

 
 
DISCUSSION 

 
In this study, in a limited group of staphylococci were 
identified and S. aureus was the dominant species; 

however, CNS was also present. In addition, several 
virulence factor genes were identified in the majority of 
isolates by multiplex PCR as well as antibiotic resistance 

to one or more antibiotics tested by diffusion method. 
Regarding SEs, the importance of seh, and selx genes 
corresponding to SEH and SElX is emphasized due their 

high incidence, while low frequency or absence of 
classical SEs were observed. The mecA positive isolates 
detected were spa type 605, and agr type II, which were 

also identified in the majority isolates. 
Herein, high frequency of S. aureus was detected, this 

species has been identified as the primary pathogen 

associated with mastitis (Ote et al., 2011; Silva et al., 
2014),  and   previous   studies   have   identified   a  high  
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Table 2. Species, spa typing, virulence factor genes and antibiotic resistance genes detected by farm. 

 

Farm Species (n) 
spa type 

(n) 

agr type 

(n) 

Enterotoxin 
gene (n) 

Hemolysin 
gene (n) 

Antibiotic resistance 
gene (n) 

A S. aureus (28) 
t605 (28) 

 

II (28) 

 

seb  (2) 

seg (18) 

seh (18) 

selk (2) 

sell (5) 

selm (2) 

selo (6) 

selq (1) 

ser (13) 

selu (13) 

selx (17) 

hla (10) 

hlb  (17) 

hld (10) 

hlg (15) 

hlg-v (15) 

mecA (2) 

 S. hyicus (2)     
ermA (1) 

ermC (1) 

 S. xylosus (2)   
sell (1) 

selp (1) 
 

tetK (2) 

tetM (1) 
       

B S. aureus (10) 

t605 (5) 

t267(4) 

t9129 (1) 

I (5) 

II (5) 

seg (7) 

seh (7) 

selj (1) 

sell (2) 

seln (2) 

selo (1) 

ser (8) 

selu (6) 

selx (9) 

hla (7) 

hlb  (8) 

hld (4) 

hlg (4) 

hlg-v (9) 

ermC (1) 

tetM (1) 

 

 S. hyicus (2)   

seh (1) 

selj (1) 

sell (2) 

selp(1) 

  

       

C S. aureus (4) 
t605 (2) 

t521 (2) 

II (4) 

 

seh (3) 

sell (2) 

seln (1) 

selo (2) 

ser (2) 

selx (2) 

hla (2) 

hlb  (2) 

hld (2) 

hlg (2) 

hlg-v (2) 

 

 S. chromogenes (1)   selp (1)   

 
 
 

frequency of this pathogen in Brazil (Silva et al., 2013; 
Lange et al., 2015). Giannechini et al. (2002)

 
also 

detected high frequency of S. aureus, and low frequency 

of S. hyicus coagulase-positive among isolates from sub-
clinical mastitis cases. The coa gene amplification also 
showed that the minority of the isolates belonged to CNS; 

which are capable of causing opportunistic mastitis 
(Moon et al., 2007). Lange et al. (2015) reported S. 
chromogenes at a frequency of 38.5%, which highlights 

the importance of coagulase-negative strains; however, 
in this study, the detection of CNS was low. S. xylosus, 
coagulase-negative,   were  also    detected,    within  this 

species there are strains that can potentially be 
hazardous, and they are related to animal opportunistic 
infections (Dordet-Frisoni et al., 2007). 

The low frequency of classical SEs is in agreement with  
a previous study in which S. aureus associated with 
bovine mastitis were analyzed (Ote et al., 2011). In this 

study, classical SEs were not identified in S. 
chromogenes, S. xylosus and S. hyicus; however, 
classical SEs have been reported in these species (Park 

et al., 2011). Among the other SEs, the frequency of seh 
was highly detected. SEH has emetic activity and 
staphylococcal  food poisoning associated with S. aureus  
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Table 3.  Conditions of the multiplex PCR optimized in this study. 

 

Set  Genes 
Concentrated 
MgCl2 (mM) 

Condition of PCR
a
 

A sea + sec 2.0 

94°C - 2 min 

54°C - 1 min     30 cycles 

72°C - 1 min 
    

B seb  + selk 2.0 

94°C - 2 min 

55°C - 1 min     30 cycles 

72°C - 1 min 
    

C sed + seh 2.0 

94°C - 2 min 

55°C - 1 min     30 cycles 

72°C - 1 min 
    

D see + selq 2.0 

94°C - 2 min 

54°C - 1 min     30 cycles 

72°C - 1 min 
    

E seg + selu 2.0 

94°C - 2 min 

54°C - 1 min     30 cycles 

72°C - 1 min 
    

F sei + selm  + selo 1.5 

94°C - 2 min 

54°C - 1 min     30 cycles 

72°C - 1 min 
    

G selj + sell 3.0 

94°C - 2 min 

64°C - 2 min    35 cycles 

72°C - 1 min 
    

H seln + selp + ser 3.0 

94 °C - 30 s 

58 °C - 30 s    35 cycles 

72 °C - 1 min 
    

I pvl + tst 3.0 

94°C - 30 s 

55°C - 30 s     30 cycles 

72°C - 1 min 
    

J hla + hlb  + hld 2.0 

94°C - 30 s 

63°C - 30 s    30 cycles 

72°C - 1 min 
    

K hlg + hlg-v 2.0 

94°C - 30 min 

48°C - 30 s 30 cycles 

72°C - 1 min 
 

a94°C/5 min for initial denaturation and 72°C/7 min for extension f inal. 

 
 
 

carrying the seh gene has been reported (Jorgensen et 
al., 2005; Argudín et al., 2010). Considering the potential 
of SEH to cause foodborne disease, strains from our 

collection that carry the seh gene should be tested 
forenterotoxin protein expression in further investigations.  

The staphylococcal enterotoxin-like toxin X (SElX) also 
demonstrated a high frequency. The selx gene is encoded 
in the core genome of S. aureus, which explains the 

frequency of selx. However, its emetic activity has not yet 
been   tested  (Hu  and  Nakane,  2014).  In  addition, it is 



90          Afr. J. Microbiol. Res. 

 
 
 

suggested in this case to further study allelic 
diversification. Other genes (seb, seg, sej and ser) that 
encode for SEs with emetic activity were detected; it 

shows that milk quality control needs to be strict in order 
to avoid the pathogen or significant count of it, and 
consequently the possibility of milk contamination with 

SEs. sek , sel, sem, sen, seo, sep, seq and seu were 
detected; however, these have not exhibited emetic 
activity in primate models or emetic activity has not been 

tested for some genes. Several SEs profiles were 
identified, this finding demonstrates the high distribution 
of SEs genes in the species studied; for example, 32 

superantigenic toxin genotypes were observed across 
166 isolates (69 food poisoning isolates, and 97 healthy 
human nasal swab isolates) in the study performed by 

Omoe et al. (2005). All hemolysin genes were identified, 
hla, hlb, hld and hlgAC were also detected by Ote et al. 
(2011), and they identified frequencies between 78.6 and 

100% in strains. In this study, hemolysin gene 
frequencies were between 32.7 and 55.1%. The most 
prevalent was hlb, which is in agreement with other study 

that assessed isolates from raw milk products (Morandi et 
al., 2009). Genes encoding exfoliative toxins, pvl and tst 
were not identified; previously Ote et al. (2011) identified 

eta and tst genes in isolates associated with bovine 
mastitis. 

Regarding antibiotic resistance, penicillin resistance is 
commonly detected in Staphylococcus spp. (Moon et al., 
2007; Gómez-Sanz et al., 2010), and this was 

demonstrated in the present study. Silva et al.
 
(2013) did 

not detect resistance to erythromycin in their isolates, 
although they detected one strain of S. aureus with 

resistance to chloramphenicol. Erythromycin and 
tetracycline resistance genes were observed (Table 2); 
these genes have been detected in Staphylococcus sp. 

(Silva et al., 2014; Gómez-Sanz et al., 2010). It is 
important to highlight that all isolates were tested for the 
presence of mecA and mecC genes as well as other 

resistance genes. These results on mecA, and SCCmec 
type are in line with Silva et al. (2014), where they 
assessed methicillin-resistant coagulase-negative 

staphylococci in milk from cows with mastitis in Brazil . 
Herein, SCCmec type I to V was investigated due to the 
availability of positive controls, further studies to assess 

types I to XI are necessary due to their importance in 
methicillin resistance. Meanwhile, the absence of a novel 
mecA homologue could be expected because it is of rare 

occurrence (Cuny et al., 2011). The absence of mec 
genes in cefoxitin and oxacillin resistant strains can 
indicate the potential presence of modified S. aureus 

(MODSA); MODSA possesses a modification of its 
penicillin-binding proteins (PBPs), which is different of 
classical mechanism of MRSA (Bhutia et al., 2012). 

Four spa types were detected, and on the farm A only 
one spa type (t605) was observed. This suggests that the 
spa type t605 is common and it can be endemic in the 

region causing subclinical bovine mastitis. The t605 type 
was   initially   detected   in   Austria,   France,  Germany,   

 

 
 
 

Netherlands, Norway, Spain, Sweden and United 
Kingdom, and represents 0.1% of relative global 
frequency of spa type occurrences in accordance with the 

website, http://www.ridom.com (http://spaserver.ridom.de 
- data collected on June 2015). Other studies in Brazil 
also detected this spa type in strains isolated from milk 

from bovine and others animals (Aires-de-Sousa et al., 
2007; Silva et al., 2013). On the other hand, the spa type 
t127 were the most detected by Silva et al. (2013). The 

agr types detected were I and II, which were also 
detected in a previous study with isolates from bovine 
mastitis (Silva et al., 2013). 

 
 
Conclusion 

 
The majority of isolates were identified as S. aureus. 
Other isolates also identified were S. hyicus, S. xylosus 

and S. chromogenes. The majority virulence factor genes 
identified using multiplex PCR, in total eleven different 
multiplex reactions were successfully optimized and 

applied in this study. The most isolates carried virulence 
factor genes, seh, and selx were the most detected 
among SEs. Hemolysins genes were widely identified, 

presenting several profiles as well as SEs. Antibiotic 
resistance was widely detected for penicillin; in addition, 
MRSA strains were observed which presents a concern 

to public health. The most prevalent spa type was t605, 
which suggests that this could be an endemic spa type in 
the herds sampled. In summary, data regarding molecular 

variability, and antibiotic resistance for a small group of 
staphylococci isolated from mastitic milk was shown, 
which confirms that more studies should be completed to 

identify and understand strains/clones in specifics regions, 
and thus to help prevent Staphylococcus infection in dairy 
cows.  
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Eucalyptus species are among the most widely grown and most economically valuable trees worldwide.  
In Brazil, eucalyptus is of major environmental and economic importance because it generates 

thousands of jobs and offers an alternative to using wood from native forests. In forest ecosystems, 
plant shoots are considered a common habitat for various microorganisms, and plants of the family 
Myrtaceae are an important source of fungal biodiversity. However, very little is known about the 

diversity and microbial distribution in eucalyptus leaves. This study aimed at showing the diversity and 
distribution of endophytic fungi in the leaves of eucalyptus plants aged 18 and 72 months. The leaves 
were collected at the onset of the rainy period, during the rainy period, and during the dry period. 

Diversity was measured using DNA extraction, 18S rRNA subunit amplification, denaturing gradient gel 
electrophoresis (DGGE), and sequencing of eluted bands. The endophytic fungal community was 
affected by plant location. Differences observed in the distribution of the phylogenetic groups found in 

the upper, middle and lower thirds of the tree canopy indicate that the endophytic community 
distribution in eucalyptus is dependent on leaf position. The age of the plants affected the diversity of 
endophytic fungi in Eucalyptus "urograndis". Phylogenetic analysis showed that the phyla 

Basidiomycota and Ascomycota dominate in the environments studied. The description of endophytic 
fungal diversity in this important forest species is an important step for assessing this genetic resource 
in the search for metabolites and processes that can contribute to improving plant development.  

 
Key words: Diversity, endophytic fungi, denaturing gradient gel electrophoresis (DGGE), sequencing.  

 

 
INTRODUCTION 
 

Eucalyptus are the most widely used trees in planted 
forests, due to their growth characteristics, their 
adaptability to climate conditions and distinct soil types, 

and the value of their wood (FAO, 2015). Eucalyptus 
wood can be used in several ways, including the 
production    of    paper    and    cellulose,    panels     and  
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Table 1. Georeferencing of the sites planted w ith eucalyptus forests, predominant soil class, year of the f irst planting and mean forest 

productivity (m3 ha-1)/rotation. 

 

Site/project Latitude (w) Longitude (s) Altitude (m) 
Soil 

class 
Plantation/eucalyptus 

planting 
Productivity (m

3
 

ha
-1

)/ rotation 

I (Catas Altas) 43° 24′ 54″ 19° 57′ 32″ 750 LAd1 1970 340 

II (Santa Bárbara) 43° 24′ 28″ 20° 4′ 30″ 750 LAw2 1989 340 

 
 

 
mechanically processed wood, and in the metalworking 
industry as plant charcoal (IBA, 2013). Additionally, 

Eucalyptus may also provide a profitable source of 
lignocellulose for energy production and advanced 
biofuels (Rockwood et al. 2008). In Brazil, Eucalyptus 

grandis x Eucalyptus urophylla hybrid (“urograndis” 
eucalyptus) plants exhibit uniform growth and high 
cellulose production, characteristics that have driven the 

growth of planted forests since the 1990s (Iglesias-
Trabado and Wilstermann, 2008). 

Plant shoots are a common habitat for various 

microorganisms (Vandenkoornhuyse et al., 2015), and 
interactions with these microorganisms are important in 
maintaining the equilibrium of the biogeochemical cycles, 

gas flows and other determinant processes in 
ecosystems (Lindow and Brandl, 2003). Endophytes can 
confer beneficial effects on the plant: protection against 

invading pathogens and herbivores, or via antibiosis or 
induced resistance and plant growth. They can still confer 
the host plant greater tolerance to salinity and drought 

(Hardoim et al., 2015). Thus, the agronomic and 
environmental significance of the microorganisms that 
inhabit plant shoots may be reflected in the adaptability of 

plant populations and also in crop quality and productivity 
(Turner et al. 2013). On the global scale, fungal diversity 
is greater in tropical forests, where terrestrial plant 

diversity is also greater; however, the true scale of 
associated endophytic diversity is still not well known 
(Luo et al., 2014).  

Endophytic fungi are present on terrestrial plants and 
are especially abundant and diverse on the leaves of 
several tropical (Arnold, 2005) and subtropical trees as 

compared to other climate zones (Banerjee, 2011). 
However, multiple patterns have already been reported 
(Zhang and Yao, 2015), which means that fungal 

diversity patterns in plants are complex. These 
microorganisms are considered important components of 
global biodiversity (Arnold, 2005). The endophytic fungi 

may affect plant adaptability and evolution in their 
environment (Vandenkoornhuyse et al., 2015).   

Characterizing the microbial community associated with 

eucalyptus plants in Brazilian commercial forests, in 
addition to providing a greater understanding of plant-

microorganism interactions, is extremely important for 
maximizing the productivity and optimizing the 

management of crops that are significant to the Brazilian 
economy. The use of culture-dependent methods in 
diversity studies allows for the assessment of only a 

small fraction of this diversity (Torsvik and Ovreas, 2002). 
Microbial diversity can also be studied by analyzing the 
total DNA of the microbiota extracted directly from the 

plant for processing using electrophoretic techniques 
(Oliveira et al., 2013). Studies using these techniques 
have contributed to a better understanding of the 

microbial community structure and have led to new 
perspectives and advances in ecological studies 
(Hoshino and Matsumoto, 2007; Oliveira et al., 2013; Da 

Silva et al., 2014). Thus, the present study aimed at 
evaluating the composition and diversity of the endophytic 
fungal community in eucalyptus leaves at the onset of the 

rainy period and during the rainy and dry periods.  
 
 
MATERIALS AND METHODS 

 

Study sites  

 

The tw o study sites are forests belonging to the Celulose Nipo-

Brasileira company (CENIBRA) planted w ith Eucalyptus 

“urograndis” located in the municipalities of Catas Altas (Site 1 – 

Catas Altas I Project) and Santa Bárbara (Site 2 – Serra do Pinho 

Project), Minas Gerais, Brazil. The forest in Catas Altas is currently 

in the seventh farming cycle, f irst implemented in December 1970, 

and the forest in Santa Bárbara is currently in the third farming 

cycle, f irst implemented in December 1989. The mean productivity 

at the tw o sites is 340 m3 ha-1/six-year rotation (Table 1), and the 

soils are highly w eathered, w ith an active, undulating, and strongly 

undulating relief and w ith yellow  Oxisol as the most representative 

soil class.  

The natural vegetation of these sites w as a semideciduous 

seasonal forest, w hich w as replaced w ith coffee crops and 

pastures. Subsequently, those crops w ere replaced w ith eucalyptus 

(CENIBRA). The plants w ere 18 months old in Catas Altas (Site 1) 

and 72 months old in Santa Bárbara (Site 2) at the time of 

sampling. 

At both sites, the climate type, according to the Köppen 

classif ication, is the mesothermal Cw a (Köppen, 1948), w ith a dry 

w inter and rain in the summer (Table 2). The mean maximum, 

average and minimum temperatures in recent years w ere 26.4, 

16.9 and 21.6°C, respectively; the relative humidity  w as  67%,  and 
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Table 2. Rainfall recorded w ithin the region studied (Catas Altas/Santa Bárbara).  

 

Year 
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

mm
3
 

2011 243 123.4 329.5 93.7 21.3 8.9 1.8 1 8.9 231.4 431 664.2 

2012 328.3 28.7 166.1 21.8 138.6 16.5 0 5.3 36.8 - - - 

 
 
 
the rainfall and w ater deficit w ere 122.9 and 15.3 mm, respectively 

(CENIBRA, Gaspar meteorological station. 

 
 
Sampling  

 
Leaves w ere sampled from selected plants that w ere 18 (Catas 

Altas) and 72 (Santa Bárbara) months old and had average height 

of 6.0 and 18.0 m, respectively. The trees w ere localized in a sub-

area of 81 m2 (approximately 8 trees), w ith a spacing of 3.33 x 3 m 

betw een trees. After the tree harvest, the leaves in three regions 

[upper (UPP), middle (MID) and low er (LOW)] of the canopy w ere 

sampled. To ensure a more representative sample from the w hole 

canopy, leaves w ere collected from proximal, median and distal 

parts of the stem in each region (in triplicate and mixed on 

composite samples). 

The samples w ere collected at the onset of the rainy period– 

ORP (October, 2011), during the rainy period– RP (December 

2012), and during the dry period– DP (April 2012). Approximately, 

50 leaves w ithout symptoms of disease (150 g) w ere collected 

separately from the upper, middle and low er thirds of the canopy. 

The samples w ere placed in a box containing ice for transport to the 

Laboratory of Microbial Ecology (Laboratório de Ecologia 

Microbiana - LEM) of the Department of Microbiology 

(Departamento de Microbiologia), Federal University of Viçosa 

(Universidade Federal de Viçosa), Minas Gerais, Brazil. In the LEM, 

the samples w ere stored and vacuum-packed at -20°C for 

approximately one month before being processed for a diversity 

analysis of their f ilamentous fungi using independent cultivation 

methodology.   

 
 
Surface sterilization of the eucalyptus leaves  

 
Surface sterilization of eight healthy leaves from each third of the 

sampled tree crow ns w as performed after the leaves w ere w ashed 

under running w ater and distilled w ater. Next, the material w as 

immersed tw ice in distilled w ater and phosphate buffer (0.05 

mmol·L-1), pH 7, immersed in 70% ethanol (v/v) for one minute, 

kept in a container f illed w ith sodium hypochlorite (5%) + 0.05% 

(v/v) Tw een-80 for f ive minutes, and then immersed for 30 s in 70% 

ethanol (v/v) before being immersed again in sodium hypochlorite + 

Tw een-80 for 15 min (Miguel et al., 2013, 2016; Oliveira et al., 

2013). This process w as repeated once. This sterilization/w ashing 

w as performed to reduce the surface DNA. Finally, the leaves w ere 

placed in sterile distilled w ater and individually placed into tubes 

containing 10 mL of R2A culture medium (Reasoner and 

Gelrdreich, 1985) and incubated at 28°C for 72 h. Aliquots (100 µL) 

of the f inal w ash w ater w ere transferred into Petri dishes containing 

agar-R2A, w hich w ere then incubated at 28°C for 72 h to 

demonstrate the absence of microbial grow th (Oliveira et al., 2013). 

 
 
Metagenomic DNA extraction from leaves  

 
Leaves  sampled  from  each  third  of   the   crow ns   w ere   surface  

sterilized, incubated in R2A medium, ground in liquid nitrogen, 

macerated, and transferred into 2.0-mL polypropylene or 

microcentrifuge tubes. Extraction buffer [(2% (p/v) cetyl trimethyl 

ammonium bromide (CTAB), 1.4 mol·L−1 NaCl, 20 mmol·L−1 EDTA, 

100 mmol·L−1 Tris–HCl, pH 8.0, and 1 g of polyvinylpyrrolidone, and 

0.2% (v/v) β-mercaptoethanol] w as added to the tubes containing 

the ground samples. Next, 1000 µL of extraction buffer, 0.5 g of 106 

µm beads, 50 µL of 4% sodium dodecyl sulfate (SDS) and 400 µL 

of phenol-chloroform (1:24) w ere added to the tubes. The mixture 

w as stirred in a homogenizer for 10 min and placed in a w ater bath 

at 60°C for 10 min. The tubes w ere centrifuged at 15,000 g, and the 

supernatant w as transferred into tubes containing 400 µL of phenol-

chloroform, follow ed by an additional centrifugation at 15,000 g for 

5 min. The DNA w as precipitated by mixing the supernatant w ith 0.6 

volumes of isopropanol, follow ed by centrifugation at 15,000 g for 

20 min. The DNA pellet w as w ashed tw ice in 70% ethanol and 

resuspended in 100 µL of sterile Milli-Q w ater after drying under a 

laminar f low  hood. The concentration and purity of the extracted 

DNA w ere confirmed via optical density at 260 and 280 nm 

(NanoDrop® ND-1000, Thermo Fisher Scientif ic, Inc.).  

 

 

Analysis of the endophytic fungal diversity 

 

Denaturing gradient gel electrophoresis (DGGE) and nested PCR 

w ere used to examine the endophytic fungal diversity of leaves. In 

the f irst PCR, the total DNA w as used as a template to amplify the 

V1-V9 region of  the fungal 18S rRNA gene. The oligonucleotide 

primers NS1 (May et al., 2001) and EF3 (Oros-Sichler et al., 2006) 

w ere used for the f irst reaction. The resulting fragments w ere used 

as templates for a second PCR, and the V7-V8 region w as 

amplif ied using the primers FF390 and FR1GC (Vainio and Hantula 

2000), w hich contain a GC clamp incorporated into the 

oligonucleotide's forw ard region.   

The f irst PCR w as performed in a f inal volume of 25 μL, 

containing 5 μL of GoTaq Flex® Reaction Buffer, 200 μM dNTPs, 

2.0 U of GoTaq Flex DNA polymerase, 3.0 mM magnesium 

chloride, 0.16 μM NS1 primer, 0.16 μM EF3 primer, approximately 

50 ng of total DNA and sterile deionized w ater (Milli-Q). The 

amplif ications w ere performed under the follow ing conditions: initial 

denaturation at 94°C for 4 min, follow ed by 35 cycles of 

denaturation at 94°C for 1 min, annealing at 47°C for 1 min, and 

extension at 72° C for 2 min, and a f inal extension at 72°C for 10 

min. The second PCR w as performed using 1.0 μL of the f irst 

reaction as the template, and the primers NS1 and EF3 w ere 

replaced w ith the pair FF390/FR1GC. The reaction conditions w ere 

as follow s: initial denaturation at 94°C for 4 min, follow ed by 35 

cycles of denaturation at 94°C for 1 min, annealing at 50°C for 1 

min, and extension for 1 min at 72°C, and a f inal extension at 72°C 

for 10 min. 

The resulting amplicons w ere subjected to DGGE (DCode 

System, Bio-Rad Inc., California). A mixture of DNA from pure 

cultures of Nocardioides thermolilacinus, Bacillus cereus, 

Streptomyces setonii, Clavibacter michiganensis, Pectobacterium 

carotovorum, Pseudomonas putida, Pseudomonas syringae, 

Xanthomonas vesicatoria and Ralstonia solanacearum w as used as 

an  external  marker  to  facilitate  normalization  of  the  gels  in  the  



 

 
 
 
BioNumerics® softw are, version 7.1 (Applied Maths, Kortrijk, 

Belgium). The PCR products w ere loaded in an 8% polyacrylamide 

gel (w /v) (37.5:1, acrylamide – N,N’-methylenebisacrylamide) 

(Sigma) w ith a denaturing gradient using 1X TAE as the buffer (40 

mmol·L−1 Tris–HCl, pH 8, 20 mmol·L−1 acetic acid, 1 mmol·L−1 

EDTA, pH 8.0), 0.09% (v/v) TEMED (N,N,N’,N’-

tetramethylenediamine) and 0.7% (w /v) ammonium persulfate. The 

denaturing gradient w as optimized at 35 to 55% urea/formamide 

(100% denaturant contains 7 mol·L−1 urea and 40% (v/v) 

formamide). Electrophoresis w as performed in 1X TAE buffer at 60 

V for 20 h at a constant temperature of 60°C. The DNA fragments 

in the gel w ere stained for 20 min in 1X TAE buffer containing 1X 

SYBR Gold dye (Invitrogen, Carlsbad, California, USA), and the gel 

images w ere recorded using Molecular Imaging System L-pix 

Chemi equipment (Loccus Biotechnology, São Paulo, SP, Brazil).  

To analyze the endophytic fungal community, individual bands 

that show ed better signal under UV light (300 nm) w ere excised 

from the polyacrilamide gels, eluted into polypropylene tubes 

containing 30 μL of sterile Milli-Q w ater, and kept overnight at 4°C. 

A 7-μL aliquot of the eluate from each band w as used as a template 

for PCR w ith the oligonucleotide primers FF390 and FR1 (w ithout 

GC clamp). The 132 amplicons obtained from PCRs w as visualized 

on an agarose gel (0.8% w /v) stained w ith Gel Red® 1000X, and 

images w ere obtained using L-pix Chemi (Loccus Biotechnology, 

São Paulo, São Paulo, Brazil). The 65 amplicons obtained from 

these reactions containing 100 ng/μL w ere sequenced by 

Macrogen, Inc. Korea, and the sequences obtained w ere compared 

w ith those available in the GenBank database (NCBI). For each 

sequence, an identity search w as performed w ith the BLASTn 

algorithm (Basic Local Alignment Search Tool) 

(http://w w w .ncbi.nlm.nih.gov/BLAST) for nucleotides (Altschul et al. 

1990). The sequences reported in this study have been submitted 

to GenBank under the accession numbers KU663411 to 

KU663476.  

The DGGE band profiles w ere compared using BioNumerics® 

softw are, version 7.1 (Applied Maths, Kortrijk, Belgium). The fungal 

richness variable w as estimated using the program based on a 

binary matrix, in w hich the presence of one band corresponding to 

an operational taxonomic unit (OTU) w as encoded as one (1) and 

its absence as zero (0). The structure of this community w as 

evaluated based on the Dice similarity coeff icient and the 

unw eighted pair group method w ith arithmetic mean (UPGMA). The 

richness and diversity analyses w ere performed using the softw are 

PAST (Hammer et al., 2001), in w hich diversity is estimated using 

the Shannon index, and statistical analyses w ere performed in 

Minitab version 15 (Minitab, 2006) (Minitab Inc., State College, 

Pennsylvania, USA) using Tukey’s test at 5% probability. The 

correlation of the endophytic fungal communities in Catas Altas and 

Santa Bárbara at the onset of the rainy period, during the rainy 

period and the dry period determined by DGGE w as determined 

using Principal Component Analysis (PCA) in Canoco softw are 

(version 4.5, Biometris, Wageningen, Netherlands). Rarefaction 

curves w ere calculated using Analytic Rarefaction 1.3 softw are 

(http://strata.uga.edu/softw are/anRareReadme.html). 

 

 

Phylogenetic analysis 

 

The obtained sequences after sequencing w ere compared w ith 

those from the NCBI Nucleotide database using the BLAST 

algorithm (Altschul et al., 1990). The 18S rRNA sequences that 

w ere distinct from each other in the database and sharing more 

than 97% identity w ere imported w ith Mega 6.0 and aligned using 

ClustalW. 

The alignments w ere manually adjusted, and a phylogenetic 

analysis w as performed using the neighbor-joining method (Saitou 

and Nei, 1987). The phylogenetic distance w as computed using the 

p-distance method, and the robustness  of  the  resulting  trees  and  
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the statistical signif icance levels of the interior nodes w ere obtained 

by bootstrap analysis w ith 1000 replicates, and the values above 

50% w ere show n.   
 
 
RESULTS 

 
The protocol for DNA extraction and 18S rRNA gene 
amplification resulted in amplicons with distinct 

electrophoretic migration patterns in DGGE, allowing the 
evaluation of the endophytic fungal diversity in the leaves 
of eucalyptus (Figure 1). 

The electrophoretic patterns obtained by DGGE 
showed more intense bands in the same relat ive 
positions (same location in the gels) and OTUs distincts 

were detected in the leaves analyzed. The presence of 
lower- and higher-intensity OTUs indicates that the 
nested PCR provided the resolution necessary for the 

diversity analyses (Figure 1). This resolution (Carmona et 
al., 2012) was interpreted as a single band after 
electrophoresis on acrylamide gel. The DNA fragments in 

the bands excised from different positions in the DGGE 
gel were identified as belonging to the phyla 
Basidiomycota and Ascomycota. The band-excision 

technique was useful in assessing the endophytic fungal 
diversity of eucalyptus in the present study (Figure 1).  

Analysis of the fungal 18S rRNA gene fragments 

present in the leaves revealed distinct fungal 
communities with respect to the cultivation sites (Catas 
Altas and Santa Bárbara). DGGE allowed the detection of 

differences between the endophytic communities in 
eucalyptus farmed in Catas Altas and Santa Bárbara 
(Figures 2 and 3). The comparative analysis between the 

two areas showed a smaller number co-occurring groups 
in relation to the analysis of individual areas. The highest 
bootstrap (98%) corresponded to samples from Santa 

Bárbara at the top of the canopy at the beginning of the 
rainy season (Figure 3).  

In the eucalyptus leaves collected within the Catas 

Altas region, UPGMA analysis generated five distinct 
groups, where the highest similarity value (52.3%) 
corresponded to the collection performed at the onset of 

the rainy period in leaves from the lower portion of the 
tree canopy (Figure 2A). The highest similarity found 
within the Santa Bárbara region was 55.3% during the 

dry period, also from the lower portion of the tree canopy 
(Figure 2B). The occurrence of common OTUs (23 and 
22) in the eucalyptus leaves is independent of the 

sampling period. Other OTUs exhibit distinct distribution 
profile between the sampling periods, such as a higher 
incidence of specific OTUs during the rainy period in 

Catas Altas, whereas this occurred during the dry period 
at the Santa Bárbara location (Figure 4). The Shannon 
diversity indices within Catas Altas ranged from 2.56 to 

3.02, and the richness indices ranged from 13 to 21 
(Table 3). In Santa Bárbara, the variation was smaller, 
with diversity indices ranging from 2.09 to 2.4 and 

richness indices ranging from 7.5 to 11.3 (Table 3).  

http://www.ncbi.nlm.nih.gov/BLAST
http://strata.uga.edu/software/anRareReadme.html
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Figure 1. DGGE electrophoretic patterns of the endophytic fungal community extracted from leaves of the low er, middle and upper 

thirds (in triplicate) of the tree canopy of eucalyptus grow n at distinct sites: (A) 18-month-old trees grow n in the municipality of 

Catas Altas, (B) 72-month-old trees grow n in the municipality of Santa Bárbara. LOW: leaves from the low er third of the tree 

canopy; MID: leaves from the middle third of the tree canopy; UPP: leaves from the upper third of the tree canopy. The samplings 

w ere performed at the onset of the rainy period, during the rainy period, and during the dry period. Letter B combined w ith Arabic 

numbers indicates the band excision location. The leaf samples collected from the middle part of the crow n at the beginning o f the 

rainy season and the rainy season from both locations w ere analyzed in duplicate because the amount of DNA extracted from the 

third sample w as insuff icient for analysis.   
 
 

 

 
 

Figure 2. Cluster analysis and similarity indices obtained from the DGGE electrophoretic pattern of the endophytic  fungal 

community extracted from leaves from the low er, middle and upper thirds of the tree canopy of eucalyptus. (A) 18-month-old 

trees grow n in the municipality of Catas Altas. (B) 72-month-old trees grow n in the municipality of Santa Bárbara. ORP: 

sampling performed at the onset of the rainy period; RP: sampling performed during the rainy period; DP: sampling performed 

during the dry period. 
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Figure 3. Cluster analysis and similarity indices obtained from the DGGE 

electrophoretic patterns of the endophytic fungal samples extracted from 

leaves of the low er, middle, and upper thirds of the tree canopy of eucalyptus 

grow n at Catas Altas (CA) (18-month-old trees) and Santa Bárbara (SB) (72-

month-old trees). ORP: onset of the rainy period; RP: rainy period; DP: dry 

period. LOW: low er portion of the canopy; MID: middle portion of the canopy; 

UPP: upper portion of the canopy. 

 

 
 
Although, there are variations in Shannon diversity index 

and richness in Catas Altas and Santa Bárbara 
individually, the difference between them is not significant 
according to the Tukey test at 5% probability. However, 

when comparing the averages of these indices between 
the two areas, Catas Altas shows higher diversity than 
Santa Bárbara according to the Tukey test at 5% 

probability (Table 3). The first and second axis of the 
principal component analysis (PCA) explained 25.1 and 
22.6% of the variation in the community of endophytic 

fungi in Catas Altas and Santa Bárbara, respectively 
(Figure 5).  

The endophytic fungal distribution in eucalyptus leaves 

in the Catas Altas region differs depending on the 
position of the leaves in the tree canopy and between the 
rainy and dry periods. At this site, 14 species were 

identified; the greatest number of species was found at 
the onset of the rainy period (Table 4).  

The endophytic community of the Santa Bárbara leaves 

comprises seven species (Table 4), which are mostly the 
same as those found in Catas Altas. However, 
Anomoloma albolutescens, Rhodotarzetta rosea and 

Rhizoctonia solani were exclusive to Santa Bárbara 
(Table 4). 

Although, leaf position and seasonality did not affect 

the diversity and richness of endophytic fungi (Table 3), 
these factors affected the endophytic fungal distribution 
of Catas Altas more than that of Santa Bárbara (Table 4). 

The highest endophytic prevalence in Catas Altas was 
found at the onset of the rainy period (Table 4), whereas 
in Santa Bárbara, it was found during the rainy period 

(Table 4). At the latter site of the fungal species identified 
by sequencing, only Boletus rubropunctus was found in 
more than one third of the tree canopy and during more 

than one of sampling period (Table 4). In eucalyptus, 
there are differences in the colonization  and  persistence 
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Figure 4. OTU distribution by Venn diagram in eucalyptus leaves at the onset of the rainy period, during 

the rainy period, and during the dry period. (A) OTU distribution in leaves collected at Catas Altas (18-

month-old trees). (B) OTU distribution in leaves sampled at Santa Bárbara (72-month-old trees). 

 
 
 
Table 3. Richness and diversity of endophytic fungi at the onset of the rainy period, during the rainy period, and the dry period in leaves of 

the upper, middle and low er thirds of the tree canopy of eucalyptus in 18 and 72-month-old plants grow n at Catas Altas (CA) and Santa 

Bárbara (SB).  

 

Study sites Indices 

Onset of the rainy period  Rainy period  Dry period 

Third of the eucalyptus canopy 

Lower Middle Upper  Lower Middle Upper  Lower Middle Upper 

CA Richness 17.30
Aa

 15.50
Aa

 15.70
Aa

  13.00
Aa

 19.50
Aa

 15.70
Aa

  18.30
Aa

 21.00
Aa

 16.00
Aa

 

SB Richness 11.30
Ba

 7.50
Ba

 11.00
Ba

  10.00
Ba

 9.50
Ba

 8.70
Ba

  9.30
Ba

 9.70
Ba

 8.30
Ba

 
             

CA Diversity 2.84
Aa

 2.73
Aa

 2.75
Aa

  2.56
Aa

 2.89
Aa

 2.75
Aa

  2.90
Aa

 3.02
Aa

 2.76
Aa

 

SB Diversity 2.35
Ba

 2.20
Ba

 2.40
Ba

  2.30
Ba

 2.20
Ba

 2.15
Ba

  2.22
Ba

 2.24
Ba

 2.09
Ba

 
 

Uppercase letters in richness in columns indicate signif icant differences between means. Uppercase letters in diversity in columns indicate signif icant 
differences betw een means. The same letters in either richness or diversity in row s indicate no signif ic ant difference betw een the means. All 
comparisons used the Tukey test at 5% probability. 

 
 
 

of endophytic fungi as a function of seasonality (Table 4), 

and Basidiomycota is the fungal phylum that 
predominates in eucalyptus leaves (Table 4). 
Phylogenetic analysis of the sequences revealed that 

they all belong to the phyla Basidiomycota and 
Ascomycota, forming distinct clades (Figure 6). Most of 
the groupings formed exhibited bootstrap values above 

70, which are considered moderate to strong (Schneider, 
2007). These findings indicate the robustness of the 
analysis. In Catas Altas, bands 1 (B1), 4 (B4), B8 (B8), 

25 (B25), 62 (B62) and 87 (B87) formed the groupings 
with the greatest phylogenetic support with bootstrap 
values greater than 80, with most of them between 98 

and 100 (Figure 6). These bootstrap values are 
considered strong (Schneider, 2007) and indicate the 
robustness of the phylogenetic analysis. 

The OTUs from the amplicons extracted from the 

bands that corresponded to leaves collected within the 
Santa Bárbara region formed groups with the greatest 
bootstraps for bands 99 (B99) and 101 (B101), whose 

bootstrap values were 97 and 99, respectively. The OTUs 
were grouped with high phylogenetic support into two 
distinct clades, both belonging to the phylum 

Ascomycota. Phylogenetic tree support is ensured by a 
value of 99 for the outermost node (Figure 6), although 
some of the bootstrap values could be considered 

moderate and low. 
The rarefaction curve calculated for the samples from 

the beginning of the rainy season, rainy season and dry 

season of Catas Altas and Santa Bárbara tended to 
reach a plateau, showing that the number of OTUs 
screened  in  the  fungal  community  of  both  areas  was 
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Figure 5. Principal component analysis (PCA) based on PCR-DGGE profiles of the 18S rRNA gene from plants 

samples from Eucalyptus “urograndis” from (A) Catas Altas and (B) Santa Bárbara at the onset of the rainy period 

(ORP), during the rainy (RP) and dry periods (DP) in the low er portion of the canopy (LOW); the middle portion of 

the canopy (MID) and the upper portion of the canopy (UPP). 

 

 
 

Table 4. Distribution, identity, e-value and NCBI accession number for each endophytic fungal species identif ied by 

sequencing the 18S rRNA gene at the onset of the rainy period, during the rainy and dry periods in leaves of the low er, 

middle and upper thirds of the tree canopy in 18- and 72-month-old eucalyptus plants grow n at Catas Altas (CA) and 

Santa Bárbara (SB).  

 

Study 
sites 

Sampling 
Canopy 
thirds 

Identification 
Identity 

(%) 
e-value Accession/NCBI 

CA 

Onset of the rainy 
period 

Lower 

Laetisaria fuciformis 99 1 e 
– 153

 AY293139.1 

Trametes versicolor 99 1 e 
– 143

 KM222266.1 

Yarrowia lipolytica 99 2 e 
– 155

 JQ698926.1 

Malassezia restricta 99 3 e 
– 61

 AAYY01000016.1 

Pachylepyrium 
carbonicola 

99 5 e 
– 142

 HQ832428.1 

Fusarium solani 99 7 e 
– 157

 KM2222302.1 

Middle 

Fusarium solani 99 7 e 
– 157

 KM2222302.1 

Pachylepyrium 

carbonicola 
97 6 e 

– 126
 HQ832427.1  

Malassezia restricta 99 3 e 
– 61

 AAYY01000016.1 

Acidomyces 
acidothermus 

98 4 e 
– 137

 JQ172747.1 

Upper 

Malassezia restricta 99 3 e 
– 61

 AAYY01000016.1 

Knufia petricola 98 6 e 
– 137

 KC988739.1 

Fusarium solani 99 7 e 
– 157

 KM2222302.1 

      

Rainy period 

Lower  Aspergillus glaucus 100 1 e 
– 153

 AY083218.1 

Middle 
Pachylepyrium 
carbonicola 

97 6 e 
– 126

 HQ832428.1 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/339509245?report=genbank&log$=nucltop&blast_rank=4&RID=SH5PM03S01R
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Table 4. Contd. 

 

 

 
Upper 

Pachylepyrium 
carbonicola 

97 6 e 
– 126

 HQ832428.1 

Malassezia restricta 99 3 e 
– 61

 AAYY01000016.1 

Marasmius alliaceus 98 2 e 
– 146

 NG_013179.1 

      

Dry period 

Lower  

Pachylepyrium 
carbonicola 

97 6 e 
– 126

 HQ832428.1 

Coniophora puteana 95 48 e 
– 115

 GU187631.1 

Sistotrema 

brinkmannii 
98 2 e 

– 146
 KM232435.1 

Middle 

Coniophora puteana 97 3 e 
– 145

 GU187631.1 

Boletus rubropunctus 98 5 e 
– 142

 FJ480426.1 

Microdochium nivale  95 2e 
-149

 AF548077.1 

Pachylepyrium 
carbonicola 

97 6 e 
– 126

 HQ832428.1 

Upper 

Pachylepyrium 
carbonicola 

97 6 e 
– 126

 HQ832428.1 

Boletus rubropunctus 98 5 e 
– 142

 FJ480426.1 

Coniophora puteana 97 3 e 
– 145

 GU187631.1 

       

SB 

Onset of the rainy 
period 

Middle 

Anomoloma 
albolutescens 

97 8e 
-145

 GU187618.1 

Malassezia restricta 98 1e 
-60

 AAYY01000016.1 

Boletus rubropunctus 97 3e 
-144

 FJ480426.1 

      

Rainy period 

Lower 

Boletus rubropunctus 97 3e 
-144

 FJ480426.1 

Rhodotarzetta rosea 97 4e 
-147

 DQ646550.1 

Pachylepyrium 
carbonicola 

97 6e 
- 126

 HQ832428.1 

Middle Boletus rubropunctus 97 3e 
-144

 FJ480426.1 

Upper 
Microdochium nivale  97 2e 

-149
 AF548077.1 

Rhizoctonia solani 97 1e 
-143

 D85644.1 

      

Dry period Middle Boletus rubropunctus 97 3e 
-144

 FJ480426.1 

 
 

 
sufficient to reveal most of the sequence types within the 
community and to reasonably describe the diversity of 

group (Figure 7). 
 
 

DISCUSSION 
 
The diversity of endophytic fungi in the eucalyptus 

leaves, as determined by nested PCR and DGGE, 
demonstrates the appropriateness of this approach in 
evaluating the endophytic fungal diversity in eucalyptus 

leaves (Figures 1, 2 and 3). Notably, this method was 
developed more than 20 years ago (Muyzer et al., 1993) 
and has been an efficient method for microbial diversity 

studies in several environments, such as in soil (Bresolin 
et al., 2010), in plants (Oliveira et al., 2013; Miguel et al., 
2016) and in animals (Kittelmann et al., 2012). The 

different intensities of the bands in the electrophoretic 
profile of DGGE were interpreted as different community 

structures.        
The DGGE analysis using UPGMA provides current 

fingerprinting patterns that can be measured quickly 

(Fromin et al., 2002) and result in dendrograms that 
graphically show the similarities between samples 
(Laplante and Derome, 2011). The endophytic fungi were 

distributed into five distinct groups via UPGMA analysis 
(Figure 2), where the highest similarity value (52.3%) 
corresponded to leaves sampled from the lower third of 

the tree canopy at the onset of the rainy period in the 
Catas Altas region. This finding indicates changes in the 
endophytic fungal distribution due to seasonality and leaf 

position (Figure 5). This change is less pronounced in 
older leaves from the Santa Bárbara region, where the 
lowest number of distinct clades was found (Figure 2B).  
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Figure 6. Phylogenetic tree constructed w ith the neighbor-joining method using fungal 18S rRNA 

gene sequences identif ied in the leaves of 18- and 72-month-old eucalyptus plants grow n at Catas 

Altas and Santa Bárbara, respectively. Bootstrap values above 50% are show n.  

 
 

 
The highest similarity value at the Santa Bárbara site was 
55.3%, occurring in the lower third of the tree canopy 

during the dry period (Figure 2B). 
The distribution of most OTUs during the three 

sampling periods of the eucalyptus leaves (23 and 22) is 

similar; however, specific OTUs exist, reflecting the 
differences in endophytic fungal community structure. 
Additionally, the OTUs also exhibit distinctions in the 

rainy and dry periods, such as higher incidence during 
the rainy period in Catas Altas, in contrast to Santa 
Bárbara, where the highest incidence occurred during the 

dry period (Figure 4). The variation in the Shannon 
diversity indices and the richness indices in Catas Altas, 
which were between 2.56 and 3.02, and between 13 and 

21 (Table 3), respectively, and in Santa Bárbara, where 
these values were lower, with diversity between 2.09 and 
2.4 and richness between 7.5 and 11.3 (Table 3), were 

interpreted to indicate that the location within the tree 
canopy and seasonality are not factors that significantly 
affect diversity (Figure 4). This interpretation is  attributed 

to the fact the average Shannon and richness indices do 
not differ significantly according to the Tukey test at 5% 

probability (Table 3). However, when these rates are 
compared between the fungal communities of Catas 
Altas and Santa Bárbara, the higher average for Catas 

Altas indicates that the age of the plants influences the 
diversity (Table 3). Species diversity is measured in 
terms of richness and uniformity, and the most common 

and extensively used index is Shannon-Wiener (H’); 
typical values range from 1.5 to 3.5 (Gazis and Chaverri, 
2010). More diverse communities tend to exhibit more 

distinct species (Ghimire et al., 2010), which explains the 
discrepancy in the diversity indices in leaves from the 
Catas Altas and Santa Bárbara sites (Table 3).  

Seasonality, although it did not influence the diversity 
(Table 3), modulated the distribution of endophytic fungi 
in Catas Altas more than that in Santa Bárbara, enabling 

best groups and the distinction between the rainy periods 
(beginning of the rainy season and the rainy season) and 
section (Figure 5). This distinction can be attributed to the  
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Figure 7. Rarefaction curves indicating OTUs based on the 

amplif ication of 18S rRNA gene diversity. (A) Catas Altas and (B) 

Santa Bárbara at the onset of the rainy period, during the rainy 

period, and during the dry period.  

 
 

 
different species found in each of these areas (Table 4). 
Seasonality shapes endophytic fungal diversity in 

eucalyptus, which can be observed based on the 
presence of common and site-specific OTUs in Catas 
Altas and Santa Bárbara (Figure 4 and Table 3). 

Seasonality can also affect the gain, loss, latency, or 
persistence of a given microbial species in the community 
(Ghimire et al., 2010). Although, the functional 

significance of these changes in microbial community 
structure due to seasonality has not been demonstrated, 
some authors report that plants are affected by factors 

such as antagonism among fungi, as well as abiotic 
variables that can affect the host plant and thus shape 
the dynamics of the associated microbiota (Ghimire et al. 

2010). 
Endophytic colonization is usually affected by the 

ontogeny of the leaves (Arnold and Herre, 2003). 

Variations in diversity and abundance observed in this 
study may be associated with the nutritional and defense 

properties at each developmental stage of these organs 
(Sanchez-Azofeifa et al., 2012). In this study, the largest 
differences in endophytic fungal diversity among the 

plants from Catas Altas (younger) and Santa Bárbara 
(older) can be attributed to plant age (Table 3). In 
addition, other variables, such as cultivation and rotation 

cycles (Ellouze et al., 2014), nutrient and sugar levels in 
the leaves, and other characteristics (Lang et al., 2011), 
may together have affected the differences between the 

diversity indices at the two sites. Notably, the forest in 
Catas Altas is currently in the seventh farming cycle, first 
implemented in December 1970, and the forest in Santa 

Bárbara is currently in the third farming cycle, first 
implemented in December 1989. The crop and rotation 
cycles can  affect   the   fungal   community   of   the   soil  

                                              A 

 
 
                                                  B 

 

 



 

 
 
 

(Ellouze et al., 2014) and, consequently, endophytic 
colonization, considering that leaves contain many 
endophytic microorganisms that originate from the soil 

(Sprent and Defaria, 1988; Hardoim et al., 2008; Van Der 
Lelie et al., 2009). Additionally, other factors may also 
contribute to differences in the endophytic communities, 

such as changes in leaf physiology and the presence of 
chemical substances, such as phenolic compounds, that 
can limit the richness of microbial species. As these 

compounds are natural inhibitors of fungal colonization, 
especially by representatives of the phylum Ascomycota, 
including Aspergillus (Banso and Rai, 2008) and 

Fusarium (Kaur et al., 2011). An equally likely 
explanation is the simple absence of these taxa in the 
older plants from Santa Bárbara.   

The differences in the distribution of endophytic fungi in 
the upper, middle and lower thirds of the tree canopy 
(Table 4) may indicate that endophytic colonization 

depends on the site of the plant sampled. The species, 
Pachylepyrium carbonicola and Malassezia restricta 
(Table 4), which are present in Catas Altas, and Boletus 

rubropunctus (Table 4), which is present in Santa 
Bárbara, can occupy multiple micro-habitats within the 
plants, indicating more generalist behavior (Table 4). 

Factors such as altitude, moisture content and canopy 
density, among others, are reported to affect the level of 
plant infection (Qi et al., 2012).  

The most commonly observed endophytic fungi in 
eucalyptus farmed in Catas Altas and Santa Bárbara 
were Fusarium solani, Malassezia restricta, 

Pachylepyrium carbonicola and Boletus rubropunctus 
(Table 4). The high identity of the sequences obtained 
with those in the NCBI database (Table 4) was the 

criterion used to confirm these species as belonging to 
the phyla Ascomycota and Basidiomycota (Figure 6). 
Although, many of the species identified are pathogenic 

to some plants, they were endophytic in the present 
study. Notably, disinfection of the surfaces of healthy 
leaves without symptoms of infection was confirmed by 

the absence of fungal growth in R2A inoculated with the 
final rinse water. The strong dominance of some fungal 
groups (Table 4) indicates that they can play a relevant 

role in plant physiology. Fungal species can produce a 
wide variety of growth regulators, such as gibberellins 
(GAs), abscisic acid (ABA), and auxins (IAA) (You et al., 

2012), and they can also confer tolerance to adverse 
biotic and abiotic factors (Hubbard et al., 2014). 

Endophytic microorganisms can colonize plants via 

wounds at lateral root emergence sites (Hallman et al., 
1997) or by releasing hydrolytic enzymes (Robl et al., 
2013) that allow them to enter and colonize the plants 

(Hallman et al., 1997).  
Fusarium species are most commonly isolated as 

pathogens from plants at all latitudes (Zakaria and Ning, 

2013) rather than as endophytes in tropical plants (Vega 
et al., 2010; Zakaria and Ning, 2013). Fungi of the genus, 
Marasmius   are   recognized    by    the    production    of  
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secondary metabolites that inhibit the growth of 
Escherichia coli (Rosa et al., 2003). This group has 
already been described as endophytic (Ngieng et al., 

2013). However, according to the literature, there have 
been no reports of endophytism for the species 
Marasmius alliaceus. The genus, Boletus contains 

species that are described as endophytic in the leaves of 
Pinus sp. (Arnold et al., 2007). However, the species, 
Boletus rubropunctus is reported here as endophytic for 

the first time.   
The presence of endophytic fungi in leaves reported 

here expands the understanding of endophytic 

colonization in eucalyptus. The description of endophytic 
fungal diversity in this important forest species is an 
important step in accessing this genetic resource in the 

search for metabolites and processes that can contribute 
to improving plant development. 
 

 

Conclusions 
 

DGGE was efficient at assessing the diversity and 
distribution of endophytic fungi in eucalyptus. Using the 
DNA fragments in the bands excised from different 
positions of the DGGE gel was a satisfactory strategy for 

assessing the endophytic fungal diversity of eucalyptus in 
the present study. The age of plants affected the diversity 
of endophytic fungi in Eucalyptus “urograndis”. The leaf 

position and seasonality affected the endophytic fungal 
distribution of Catas Altas more than that of Santa 
Bárbara. The phyla Basidiomycota and Ascomycota are 

predominant components of the endophytic fungal 
microbiota in eucalyptus.  
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The Brazilian Ministry of Health determined in 2012 that the official protocol for diagnosis of Canine 
Visceral Leishmaniasis (CVL) would be the Dual-Path Platform (DPP) for screening, followed by 

enzyme-linked immunosorbent assay (ELISA) for confirmation. This study evaluated serum samples 
from 426 dogs from a region in northern Brazil. All samples were tested according to the Official 
Protocol and the sequence inverting (ELISA followed DPP). Regardless of the protocol adopted, 

prevalence (14.7%) has not changed. The approach using ELISA followed by DPP state that, the number 
of positive animals in screening was higher compared to the official protocol. Screen the ELISA test 
could be more appropriate. 

 
Key words: Canine visceral leishmaniasis, Dual-Path Platform (DPP), enzyme-linked immunosorbent assay 
(ELISA), tocantins. 

 
 
INTRODUCTION 

 
Canine visceral leishmaniasis (CVL) is a potentially fatal 
disease caused by the intracellular protozoan parasite 

Leishmania infantum, which is endemic in South and 
Central America, Mediterranean basin and parts of Asia. 

Dog is the most important reservoir host, and infection is 
maintained by transmission between dogs by 

phlebotomine sandfly species (Quinnell and Couternay, 
2009). 
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From an epidemiological point of view, the canine 
disease is more important than the human disease 

because, besides being more prevalent, it has large 
numbers of asymptomatic dogs with parasites in the 
dermis, and has the potential of transmitting the parasite 

to sand-fly (Laurenti et al., 2013). 
Recently, to improve accuracy in the diagnosis of CVL 

in Brazil, the Visceral Leishmaniasis Control and 

Surveillance Program (VLCSP) has recommended the 
immunochromatographic rapid test comprising rK26 and 
rK39 recombinant antigens, the Dual-Path Platform 

(DPP; Bio- Manguinhos/Fiocruz, Rio de Janeiro, Brazil), 
for the screening of L. infantum-infected dogs and 
enzyme-linked immunosorbent assay (ELISA) to confirm 

the positive results (Ministério da Saúde, 2011). In this 
sense, the present study aimed to carry out the first 
seroepidemiological survey for CVL in the city of Gurupi, 

Tocantins, northern Brazil between 2013 and 2015. For 
this, we used the Brazilian official protocol (DPP and 
ELISA), and the reversal order in serologic techniques, 

investigating whether changing the protocol could change 
the animals positive rate. 
 

 

MATERIALS AND METHODS 

 

The present study consist a cross-sectional survey carried out in 

Gurupi (latitude 11° 43’ 45’’S, longitude 49° 04’ 07’’W, altitude 287 

m), a municipality located in the southw est of Tocantins, Brazil. 

For random sampling calculation, w e used off icial data expected 

prevalence of 20%, 95% confidence interval (95% CI) and 

maximum acceptable error of 0.05, totaling 246 samples. 

Furthermore, 10% samples w ere added, amounting to 271 

samples. How ever, more samples w ere collect over a period of 

time, reaching 426 blood samples from asymptomatic and 

symptomatic dogs betw een September 2013 and November 2015. 

Each sample w as tested using tw o approaches, the f irst using the 

protocol recommended by the Brazilian Ministry of Health, and the 

second, reversing the order of the tests. The f irst protocol used 

DPP CVL rapid test (Bio-Manguinhos/Fiocruz) for screening and 

ELISA (Canine Leishmaniasis EIE Kit, Biomanguinhos/Fiocruz) as a 

confirmatory test. This protocol used serum for serological tests 

w hile both protocols follow ed the manufacturer’s instructions. The 

second protocol used ELISA (Canine Leishmaniasis EIE Kit) for 

screening and DPP CVL rapid test for confirmation. 

 The cut-off of the EIE Kit w as defined based on the manufacturer’s 

instructions, w hich consider the mean of the optical density of the 

negative controls multiplied by tw o. Statistical analysis w as 

performed using Stata softw are (version 11.0; Stata Corp, College 

Station, TX). The prevalence rates indicated by DPP and ELISA 

w ere estimated using 95% CI. 

 
 
RESULTS AND DISCUSSION 

 
In the first approach, following the Brazilian Ministry of 
Health protocol, of the 426 serum samples evaluated by 

both methods, 112 (26.29%) were positive in DPP and 
from this initial screening, 63 (56.23%)  were  positive  by  
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ELISA. While in the second proposal, out of the 426 
samples screened in the ELISA test, 136 (31.92%) were 

positive, and from this screening, 63 (46.32%) samples 
were positive to purified protein derivative (PPD) test. For 
both protocols, the prevalence was 14.7%, with no 

differences in the final number of positive animals in the 
two serologic techniques (Figure 1). Sensitivity and 
specificity were 82.3 and 92.8% at DPP test and 85 and 

92.3% in the ELISA test, respectively. 
Official data indicate that, the city of Gurupi has an 

intense transmission rate of CVL, with a prevalence of 

23% in 2013 and 23.5% in 2014 (official unpublished 
data). These results are favored by the climate of the 
region and the constant degradation of native areas 

housing construction and agricultural activities. The rates 
of positive animals found in an urban area in the State of 
Pernambuco (Brazil), has an overall seroprevalence 

which was 40.3% (Dantas-Torres e Brandão-Filho 2006). 
However, the results found in this study, is in line with the 
average in Brazil, ranging from 5.9 to 51.35% (Franca-

Silva, 2003; Monteiro et al., 2005; Morais et al., 2013). It 
notes that, the current official protocol has to be 
implemented in 2012. The sensitivity of the DPP test 

depends on the clinical condition of the animal. However 
it is known that, the DPP is more sensitive when used in 
symptomatic dogs, and lower the income in 

asymptomatic animals (Grimaldi et al., 2012). 
In a previous state developed in other regions of Brazil, 

this was bought for the first time to change the protocol 

for diagnosis of CVL. A survey was conducted with 1226 
dogs, followed by a cohort study using 447 dogs. Results 
showed that the protocol using DPP and ELISA detected 

a higher prevalence (8.1%) of infected dogs than the 
protocol using ELISA and IFAT (prevalence, 6.2%). 
However, regardless of the test sequence (DPP followed 

by ELISA or ELISA followed by DPP), the number of 
positive animals is the same in both tests (Coura-Vital et 
al., 2014). Positive serum samples for Ehrlichia canis, 

Babesia canis, Toxoplasma gondii, Neospora caninum 
and Trypanosoma cruzi were tested using three 
serological methods ELISA, indirect immunofluorescent 

antibody test (IFAT) and Kalazar Detect™, for CVL. Of 
the 57 dog samples tested, 24 (42.1%) tested positive 
using one of the three serological methods: 10/57 

(17.5%) for ELISA, 11/57 (19.3%) for IFAT and 3/57 
(5.3%) for Kalazar Detect™. Results demonstrated that 
the presence of other infectious agents may lead to 

cross-reactivity on leishmaniasis serological tests. 
(Zanette et al., 2014). Moreover, in another study using 
DPP and ELISA, cross-reactivity was obtained with only 

Babesia (Laurenti et al., 2014). 
Among DPP using and ELISA for screening of dogs in 

endemic areas, the DPP have advantages by being easy 

and practical easier to handle, with the result been ready 
in  15 min   after   blood   collection.   Further,   laboratory  
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Figure 1. Draw ing of tw o evaluations protocols w ith samples of 426 dog area w ith 

intense transmission of CVL. Left, the off icial protocol used by the Brazilian Ministry of 

Health, Right, the protocol w ith reversing the order of serologic tests. 

 

 
 
equipment is not necessary for diagnosis. On the other 

hand, if the animal is positive, spend more time in 
collecting more samples to be sent to, the Central Public 
Health Laboratories (LACENS). As the ELISA detects 

more positive animals in screening, it is interesting that in 
areas of high prevalence and incidence, the ELISA will be 
used for screening and DPP for confirmation, given that 

there was no difference in the final number of animals 
positive. 
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